zomgwtf said:
The genetic changes that occur are definitely random yes... no one has said otherwise. Evolution however is not individual genetic changes in an organism but genetic change in an entire population of species. It's not by chance that the organism gets to mate and continue the inheritance, it is something that occurs naturally for various reason.
Only in hindsight can we look back and say 'well it's lucky that humans evolved larger brains when they could have just as easily stayed with more primative brains,' the thing is though that it was not by chance but by natural selection.
It certainly IS by chance that an organism manages to mate and pass on their genes. Most organisms have a heck of a lot more than two offspring per generation, ten or twelve or twenty or thousands. In the long run, (for the simple sexually producing case anyway) two offspring manage it.
Or consider plants. Evolution works for all life and making sure the theory works across the board means thinking of them as well. I remain quietly confident that chance is absolutely critical for success in mating.
In fact, I would think for the great majority of organisms, it's not even close. When you have thousands of spoors or seeds going out, some with one mutation and some with another, what's the biggest factor? I propose it is chance.
One problem is that people mix up chance with the idea of 50/50. (Casinos love those people.) They aren't the same thing at all.
The effects of selection are to bias the odds, usually just a little bit. And that is enough to mean that, over long time spans, fitness of the population is usually maintained. Because when you have long time spans with thousands of generations, a little bit of selection can have a dramatic effect.
You seem to be speaking of natural selection as something deterministic. It isn't. In population genetics, a gene (or more correctly, an allele) is said to increase reproductive fitness if organisms with that mutation are more likely to have surviving offspring. But it is certainly not a guarantee.
There is a finite non-negligible probability for any allele to be either fixed, or eliminated in a population. Either result is evolution, by definition, because it is a change in the distributions of alleles within the population. I know it is not about individuals. That's why my earlier post consistently refers to populations throughout, and refers you to texts on populations genetics, which go into the maths involved.
If you have a stable population of N individuals (a nice simple ideal case to start explaining this things), then a neutral mutation has a 1/N chance of being fixed, and a (N-1)/N chance of being eliminated. There's no selection involved here at all, but it is still evolution, of course; by the definition we have both been using. (1/2N if we get into the whole haploid diploid thing.)
But what if there is selection involved. In that case a beneficial allele is one with a greater than 1/N chance of being passed on, and a detrimental allele is one with a less than 1/N chance of being passed on. In either case, the odds are stacked against being passed on... even for beneficial alleles.
The best you can say is that in the long run, the casino wins. But it does so with a random walk, and precisely where you end up depends on chance, to a considerable degree. So sure, I continue to think of evolution as "random", meaning not that all results are equally likely, but only that the outcome depends on chance.
You seem to suggest that it was inevitable that we'd end up with large brains. Why would you think that? Personally, I think luck or chance had a heck of a lot to do with it. The vast majority of other living organisms on this planet didn't go that road, so why us? You know what I think? Chance. And why not? Was it inevitable that the robust Australopithenes are now extinct, but the gracile Australopithecenes live on, indirectly, as their descendents in the Homo genus? I don't think so; but then I don't think natural selection is a deterministic forces that ensures a particular result with regard for chance.
I think if we were able to somehow wind back the clock ten million years and run it again, there's no assurance at all that large brained hominids would reach plague proportions in the present. They might, they might not. They did in the only time we've run the experiment, but to say this wasn't luck is kind of assuming the conclusion, isn't it?
Natural selection itself is not chance, I agree. But evolution is not natural selection. It is change in distributions of heritable characteristics of populations. Natural selection has an impact on evolution because it modifies the chances of life and love for individuals with different characteristics.
Cheers -- sylas
PS. Missed two posts while I was writing. I think I'll read for a bit before writing again. Pleased to meet you, Jon.