Mike_Fontenot said:
If any forum members want to construct their own rough sketches of the plots I asked for, by translating from Dalespam's plots, then to get the big picture, you should plot the entire ranges of the two twin's ages, starting from zero age, and stopping about 5 years beyond when the traveler does his second velocity change. Also, use the same scale for each axis. (And note that for both plots, the home twin's age should be plotted vertically, and the traveler's age is plotted horizontally).
Actually, in order to illustrate that PassionFlower's reference frame has a problem, it is only necessary to plot the first leg of the traveler's (Tom's) journey (starting with his birth, and ending when he is 20 years old).
The age of the home twin (Sue), as a function of the age t of the traveler, is always denoted using the root acronym "CADO". Then, I add either of two "subscripts", either "_T" or "_H", to indicate WHOSE conclusion is being referred to (either the Traveler's conclusion, or the Home twin's conclusion, respectively.
So, we sketch two different curves on the same graph, with the vertical axis being the home twin's (Sue's) age, and the horizontal axis being the traveler's (Tom's) age. And we indicate which of those two curves corresponds to the traveler's (Tom's) conclusion (CADO_T), and which corresponds to the home twin's (Sue's) conclusion (CADO_H), about Sue's current age.
What is in dispute, is whether the curve CADO_T(t) should be determined using my reference frame for the traveler (I'll refer to it as "the {MSIRF(t)} frame"}, or using PassionFlower's frame (I'll refer to it as "the PF frame") ... or perhaps some other alternative (Doby & Gull (?)).
So, to do the comparison, we actually need to plot two different versions of CADO_T(t). I'll use the original label, CADO_T for my {MSIRF(t)} frame, and CADO_T_PF for PassionFlower's frame.
Use the same scale on each axis. Make the vertical axis twice as long as the horizontal axis, with the horizontal axis ranging from zero to 20 years old, and the vertical axis ranging from zero to 40 years old.
The CADO_H(t) curve is then a straight line, of slope 2. (I'm using my originally specified velocity of 0.866c, resulting in a gamma value of 2). This follows purely from the well-known time dilation result: Sue says that Tom is always half her age (since they were both born at the same instant, and (momentarily) at the same location). Or, equivalently, Sue says that she is always twice as old as Tom ... thus the slope of 2.
The CADO_T(t) curve is a straight line, of slope 1/2. This also follows from the time dilation result (since Tom is unaccelerated during his whole life, up until he is 20 years old). This result can also be obtained from the basic CADO equation, but the result is the same either way. (The CADO equation, during segments where v is constant, can be used to show that Tom will come to the same conclusion about their relative rates of ageing as he would have if he were perpetually inertial).
[ADDENDUM: Actually, the above result follows DIRECTLY from the definition of the {MSIRF(t)} frame itself: the {MSIRF(t)} frame is the collection of all the momentarily stationary inertial reference frames (one for each instant t of the traveler's life), such that the traveler, at each instant t of his life, adopts the conclusions of the inertial reference frame with which he is momentarily stationary at that instant. So, during any segment where his acceleration is zero, he agrees with the single inertial reference frame with which he is stationary during that entire segment (no matter how short or long that segment may be). I.e., anytime the traveler temporarily stops accelerating, he IMMEDIATELY becomes a full-fledged inertial observer, and remains an inertial observer up until he starts to accelerate again.]
For PassionFlower's frame, the CADO_T_PF(t) curve is a straight line, of slope 1. (This is true, for the first leg, regardless of what the constant relative velocity v is).
I encourage anyone following all this to sketch out the above three curves (all on the same graph).
Now, can anyone see what the problem is with PassionFlower's frame?
If not, here's a hint:
Add this to the original scenario: Tom's mother actually gave birth to two twins: Tom and Jerry. All three of them (mother and her two twin sons) continue along (co-located) at their constant velocity of +0.866c relative to Sue. Tom and Jerry are indistinguishable during their first 20 years of life ... neither of them has ever accelerated. Tom reverses course (with v = -0.866c) when he is 20 (as described previously), but Jerry NEVER accelerates. Question: What does Jerry conclude about Sue's current age? I.e., what does the curve CADO_TJ(t) look like? (The subscript "_TJ" denotes the additional Traveler's (Jerry's) conclusion about Sue's current age). Plot that curve along with the other three curves. Do you detect any problem with PassionFlower's frame?
Mike Fontenot