Reverse Induction for Proving Negative nth Derivatives of x*e^(x)

  • Thread starter Thread starter Char. Limit
  • Start date Start date
  • Tags Tags
    Induction Reverse
Char. Limit
Gold Member
Messages
1,222
Reaction score
23

Homework Statement


Say I had a problem like this:

Prove that the nth derivative of x*e^(x) is (x+n)*e^(x) for all integer n.

Can I use reverse induction to prove for negative n? For example...

Say I proved it for my base case, n=0. In this case, the proof is trivial.

Then I prove that if the nth derivative is (x+n)e^(x), then the (n+1)th derivative is (x+n+1)e^(x). (I didn't provide the proof because there's a similar homework problem here, and the proof is easy anyway.

Can I then use reverse induction to prove that if the nth derivative is (x+n)e^(x), then the (n-1)th derivative is (x+n-1)e^(x), thus extending this case to negative derivatives (i.e., integrals)?

Am I even making sense?
 
Physics news on Phys.org
Hmm, I'm not sure if this is correct. You do have to use reverse induction though. But isn't it easier to show "if it holds for -n, then it holds for -n-1". Or is this what you meant?
 
micromass said:
Hmm, I'm not sure if this is correct. You do have to use reverse induction though. But isn't it easier to show "if it holds for -n, then it holds for -n-1". Or is this what you meant?

Well, that would probably work too. EDIT: Since my base case is n=0, I don't see much of a difference.
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top