How can I find the momentum squared operator?

  • Thread starter Thread starter Harrisonized
  • Start date Start date
  • Tags Tags
    Momentum Operator
Harrisonized
Messages
206
Reaction score
0

Homework Statement



This problem is about the momentum squared operator. First, I state how I saw the derivation for the momentum operator. Then I state how I attempt to (and fail to) derive the momentum squared operator using the same methods.

Homework Equations



<p> = ∫ ψ*(ħ/i ∂/∂x)ψ dx

The construction for this definition is straightforward. We start with the fact that

<p> = m d/dt <x>
= m ∂/∂t ∫ ψ* x ψ dx
= m ∫ x ∂/∂t ψ*ψ dx
= m ∫ x ∂/∂x [iħ/2m ψ*(∂ψ/∂x)-(∂ψ*/∂x)ψ] dx (from the probability flux)

Here, we use the substitution x(∂/∂x)f(x) = ∂/∂x[xf(x)]-f(x) and say that since square integrable functions (that is, normalizable functions) must have derivatives that vanish, the first part is zero. We're left with "-f(x)", which is:

= m(iħ/2m) ∫ -[ψ*(∂ψ/∂x)-(∂ψ*/∂x)ψ] dx
= ħi/2 ∫ [(∂ψ*/∂x)ψ-ψ*(∂ψ/∂x)] dx
= ħi/2 ∫ (∂/∂x)ψ*ψ -2ψ*(∂ψ/∂x) dx

Again, the derivative vanishes.

= ħ/i ∫ ψ*(∂ψ/∂x) dx

Hence, we define the momentum operator as:

p = ħ/i (∂/∂x)

The Attempt at a Solution



To obtain the momentum squared, I go through the following steps (the first few steps are about the same):

<p> = m2 d/dt <x2>
= m2 ∂/∂t ∫ ψ* x2 ψ dx
= m2 ∫ x2 ∂/∂t ψ*ψ dx
= m2 ∫ x2 ∂/∂x [iħ/2m ψ*(∂ψ/∂x)-(∂ψ*/∂x)ψ] dx (from the probability flux)

From here, I use:

x2(∂/∂x)f(x) = ∂/∂x[x2f(x)]-2xf(x) (1)

The first part vanishes. We're left with 2xf(x)

= m2(iħ/2m) ∫ 2x [ψ*(∂ψ/∂x)-(∂ψ*/∂x)ψ] dx
= mħi ∫ x [ψ*(∂ψ/∂x)-(∂ψ*/∂x)ψ] dx
= mħi ∫ x [(∂/∂x)[ψ*ψ]-2(∂ψ*/∂x)ψ] dx

using another x(∂/∂x)f(x) = ∂/∂x[xf(x)]-f(x) type substitution:

= mħi ∫ -[ψ*ψ]-2x(∂ψ*/∂x)ψ] dx
= -mħi (1+∫ 2x(∂ψ*/∂x)ψ] dx)

It's obviously wrong since it's imaginary. Going back to step (1), which I bolded, and making the substitution

x(∂/∂x)g(x) = ∂/∂x[xg(x)]-g(x), where g(x) = (∂/∂x)g(x)=f(x), I'm left with 2g(x)=2∫f(x)dx

= 2mħi ∫∫ [(∂/∂x)[ψ*ψ]-2(∂ψ*/∂x)ψ] dx2

I don't understand why this happens. I get an imaginary answer every time. :(
 
Last edited:
Physics news on Phys.org
your equation <p2> = m2 d/dt <x2> is wrong
 
##|\Psi|^2=\frac{1}{\sqrt{\pi b^2}}\exp(\frac{-(x-x_0)^2}{b^2}).## ##\braket{x}=\frac{1}{\sqrt{\pi b^2}}\int_{-\infty}^{\infty}dx\,x\exp(-\frac{(x-x_0)^2}{b^2}).## ##y=x-x_0 \quad x=y+x_0 \quad dy=dx.## The boundaries remain infinite, I believe. ##\frac{1}{\sqrt{\pi b^2}}\int_{-\infty}^{\infty}dy(y+x_0)\exp(\frac{-y^2}{b^2}).## ##\frac{2}{\sqrt{\pi b^2}}\int_0^{\infty}dy\,y\exp(\frac{-y^2}{b^2})+\frac{2x_0}{\sqrt{\pi b^2}}\int_0^{\infty}dy\,\exp(-\frac{y^2}{b^2}).## I then resolved the two...
Hello everyone, I’m considering a point charge q that oscillates harmonically about the origin along the z-axis, e.g. $$z_{q}(t)= A\sin(wt)$$ In a strongly simplified / quasi-instantaneous approximation I ignore retardation and take the electric field at the position ##r=(x,y,z)## simply to be the “Coulomb field at the charge’s instantaneous position”: $$E(r,t)=\frac{q}{4\pi\varepsilon_{0}}\frac{r-r_{q}(t)}{||r-r_{q}(t)||^{3}}$$ with $$r_{q}(t)=(0,0,z_{q}(t))$$ (I’m aware this isn’t...
It's given a gas of particles all identical which has T fixed and spin S. Let's ##g(\epsilon)## the density of orbital states and ##g(\epsilon) = g_0## for ##\forall \epsilon \in [\epsilon_0, \epsilon_1]##, zero otherwise. How to compute the number of accessible quantum states of one particle? This is my attempt, and I suspect that is not good. Let S=0 and then bosons in a system. Simply, if we have the density of orbitals we have to integrate ##g(\epsilon)## and we have...
Back
Top