Given the function f(x)=[e^(x^2)]/[x^2 -2] , find all the key features

  • Thread starter Thread starter euro94
  • Start date Start date
  • Tags Tags
    Function
euro94
Messages
26
Reaction score
0

Homework Statement


Given the function f(x)=[e^(x^2)]/[x^2 -2]
find all intercepts
find the critical points
does the function have a horizontal asymptote? justify answer
find local max and min points


Homework Equations





The Attempt at a Solution


to find x-intercepts, let y=0, therefore no x-intercepts?
for critical points, find the derivative, which is f'(x)=2xe^(x^2)/2x and let it equal to zero, which shows no critical points..
stuck on this question..
 
Physics news on Phys.org
Your f'(x) is incorrect. You need to use the quotient rule.
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top