Coplanar and Linear dependency.

  • Thread starter Thread starter jrotmensen
  • Start date Start date
  • Tags Tags
    Linear
jrotmensen
Messages
3
Reaction score
0

Homework Statement


Prove that vectors u, v, w are coplanar if and only if vectors u, v and w are linearly dependent.\overline{v}_{3}=\alpha\overline{v}_{1}+\beta\overline{v}_{2} (Coplanar Vector Property)
\alpha\overline{v}_{1}+\beta\overline{v}_{2}+\gamma\overline{v}_{3}=\overline{0} (linearly dependent vector property)
 
Last edited:
Physics news on Phys.org
jrotmensen said:

Homework Statement


Prove that vectors u, v, w are coplanar if and only if vectors u, v and w are linearly dependent.


\overline{v}_{3}=\alpha\overline{v}_{1}+\beta\overline{v}_{2} (Coplanar Vector Property)
\alpha\overline{v}_{1}+\beta\overline{v}_{2}+\gamma\overline{v}_{3}=\overline{0} (linearly dependent vector property)
State the entire properties! What you have are equations, not properties.

"Three vectors, v_1, v_2, and v_3 are coplanar if and only if
\overline{v}_{3}=\alpha\overline{v}_{1}+\beta\overline{v}_{2}
or
\overline{v}_{1}=\alpha\overline{v}_{2}+\beta\overline{v}_{3}
or
\overline{v}_{2}=\alpha\overline{v}_{1}+\beta\overline{v}_{3}
for some numbers \alpha and \beta"

"Three vectors, v_1, v_2, and v_3 are dependent if \alpha\overline{v}_{1}+\beta\overline{v}_{2}+\gamma\overline{v}_{3}=\overline{0}
with not all of \alpha, \beta, \gamma equal to 0."

Suppose \vec{v_1}, \vec{v_2}, and \vec{v_3} are planar. Subtract the right side of that equation from both sides.

Suppose \vec{v_1}, \vec{v_2}, and \vec{v_3} are dependent. Solve that equation for one of the vectors.
 
Last edited by a moderator:
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top