nkinar
- 74
- 0
Hello--
I need to generate synthetic data to test an algorithm used to process data from an experiment. A synthetic wavelet is constructed using the following equations, but I am uncertain how to numerically evaluate the improper integral shown below.
<br /> \[<br /> u(t) = {\mathop{\rm Re}\nolimits} \left\{ {{\textstyle{1 \over \pi }}\int\limits_0^\infty {S\left( \omega \right)\exp \left[ {i\left( {\omega t - kr} \right)} \right]d\omega } } \right\}<br /> \]<br />
In the equation above, {\mathop{\rm Re}\nolimits} indicates the real part, \pi is the ubiquitous pi constant, i denotes an imaginary number, and \omega is the angular frequency (1/s).
Also,
<br /> \[<br /> S\left( \omega \right) = 4\sqrt \pi \frac{{\omega ^2 }}{{\omega _0^3 }}\exp \left[ { - \frac{{\omega ^2 }}{{\omega _0^2 }}} \right]<br /> \]<br />
In the equation above, \omega_0 is a reference angular frequency (1/s).
Also,
<br /> \[<br /> kr = \left( {1 - \frac{i}{{2Q}}} \right)\left( {\frac{\omega }{{\omega _0 }}} \right)^{ - \gamma } \omega t<br /> \]<br />
In the equation above, Q is a constant real number, \[\gamma = (\pi Q)^{ - 1} \], and t is the time (s).
How would I numerically integrate the improper integral to obtain u(t), also using the other formulas listed above?
I need to generate synthetic data to test an algorithm used to process data from an experiment. A synthetic wavelet is constructed using the following equations, but I am uncertain how to numerically evaluate the improper integral shown below.
<br /> \[<br /> u(t) = {\mathop{\rm Re}\nolimits} \left\{ {{\textstyle{1 \over \pi }}\int\limits_0^\infty {S\left( \omega \right)\exp \left[ {i\left( {\omega t - kr} \right)} \right]d\omega } } \right\}<br /> \]<br />
In the equation above, {\mathop{\rm Re}\nolimits} indicates the real part, \pi is the ubiquitous pi constant, i denotes an imaginary number, and \omega is the angular frequency (1/s).
Also,
<br /> \[<br /> S\left( \omega \right) = 4\sqrt \pi \frac{{\omega ^2 }}{{\omega _0^3 }}\exp \left[ { - \frac{{\omega ^2 }}{{\omega _0^2 }}} \right]<br /> \]<br />
In the equation above, \omega_0 is a reference angular frequency (1/s).
Also,
<br /> \[<br /> kr = \left( {1 - \frac{i}{{2Q}}} \right)\left( {\frac{\omega }{{\omega _0 }}} \right)^{ - \gamma } \omega t<br /> \]<br />
In the equation above, Q is a constant real number, \[\gamma = (\pi Q)^{ - 1} \], and t is the time (s).
How would I numerically integrate the improper integral to obtain u(t), also using the other formulas listed above?