Help me solving this differential equation please

ahm_11
Messages
6
Reaction score
0
μ[uyy + uzz] - ∂p/∂x = 0 ... (1)

∂u/∂x = 0 ;

i tried assuming u(y,z) = Y(y)Z(z)

so (1) becomes ... μ[ZYyy + YZzz] - ∂p/∂x = 0

hence (1/Y)*Yyy + (1/Z)*Zzz = (R/YZ) = -λ2
where, R = (1/μ)*∂p/∂x

now Yyy + λ2Y = 0 ... can be solved easily but what about the remaining part ... i couldn't solve it due to the constant ...
 
Physics news on Phys.org
ahm_11 said:
μ[uyy + uzz] - ∂p/∂x = 0 ... (1)

∂u/∂x = 0 ;

i tried assuming u(y,z) = Y(y)Z(z)

so (1) becomes ... μ[ZYyy + YZzz] - ∂p/∂x = 0

hence (1/Y)*Yyy + (1/Z)*Zzz = (R/YZ) = -λ2
where, R = (1/μ)*∂p/∂x

now Yyy + λ2Y = 0 ... can be solved easily but what about the remaining part ... i couldn't solve it due to the constant ...
Is there any other information? In particular, is there anything known about p?
 
∂p/∂x = constant

Some boundary conditions:
x=0 , x=L ... ∂u/∂x = 0 , v=0 , w=0 , ∂p/∂x = constant
y=-a,y=a ... u=0,v=0,w=0, ∂p/∂y=0
z=-b,z=b ... u=0,v=0,w=0, ∂p/∂z = 0
 
ahm_11 said:
μ[uyy + uzz] - ∂p/∂x = 0 ... (1)

∂u/∂x = 0 ;

i tried assuming u(y,z) = Y(y)Z(z)

so (1) becomes ... μ[ZYyy + YZzz] - ∂p/∂x = 0

hence (1/Y)*Yyy + (1/Z)*Zzz = (R/YZ) = -λ2
where, R = (1/μ)*∂p/∂x

now Yyy + λ2Y = 0 ... can be solved easily but what about the remaining part ... i couldn't solve it due to the constant ...

Since \partial{p}/\partial{x} = c (a constant) your DE is just
u_{yy} + u_{zz} = k,
where k = c/ \mu is a constant. Your condition u_x = 0 means that 'x' does not appear anywhere in the problem.

RGV
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top