Whats the derivative of sin^2(theta)?

  • Thread starter Thread starter M. next
  • Start date Start date
  • Tags Tags
    Derivative
M. next
Messages
380
Reaction score
0
but i need the derivative wrt time where theta depends on time
 
Physics news on Phys.org
M. next said:
but i need the derivative wrt time where theta depends on time

Use the chain rule.
$$\frac{d}{dt}sin^2(\theta) = \frac{d}{d\theta}sin^2(\theta)\cdot \frac{d\theta}{dt} = ? $$
 
then it is simply 2sin(theta)cos(theta)*(theta dot)
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top