No, there isn't a single special matrix. In the given example, as I think you are now aware, the point is that matrices don't generally satisfy ##AB=BA## so you don't get ##2AB## in the expansion when you multiply them out. So if you are looking for a counterexample, you don't want to choose, for example, A = the zero matrix, because it commutes with everything just because it always gives all zeroes. That is a general idea: If you are trying to prove some identity doesn't always work, look for an example by choosing variables that are unlikely to "accidentally" work because they have special properties. So if I were looking for examples in the current case, I wouldn't use the zero matrix, the identity matrix, a lower triangular matrix or a symmetric matrix. I would try a more "random" matrix that doesn't have any special properties. Does that make sense to you?