DaleSpam said:
[]SR predicts a very large accelerometer reading during the turnaround, and real free falling accelerometers read 0.
Not every measurement in every scenario is sensitive to gravity. This one is.
I am not making a claim that SR is inapplicable in every scenario where there is any gravity present. It is inapplicable in the twin paradox, for the reasons I stated above.
I am "getting" very little of the discussion concerning the relationship between SR, Langevin's scenario, and GR. That's not surprising, as I understand only the most basic principles of SR (and for all I know that understanding may need fine tuning), have only a vague conception of GR as a theory in which space and time curve to produce relative motion of massive objects without applied force in the presence of a gravitational field--and absolutely no knowledge of Langevin's ideas.
But this much I believe to be undeniably true of a purely SR treatment of a scenario in which two bodies, one inertial and the other non-inertial, separate from each other and then approach to reunion: the non-inertial body must experience unbalanced force at the transition from separation to approach. There is no other way for the period of separation to end. Therefore I agree with DaleSpam's statement in [my] bold, above.
I think I understand the point that even if one posits that the non-inertial twin reverses direction by "swinging around" a star, there must still be an unbalanced force--a non-zero reading on an accelerometer. The unbalanced force is due to the change of gravitational potential during the flyby. However, at this time I am unable to verify my understanding by calculation, so I have no actual opinion in the matter.
I'm about ready to sign off this thread, as the question in the OP has been answered to the extent possible with my current knowledge. My response to George's concerns will be in a new thread, as it pertains specifically to the explanation of the twin paradox, rather than to the more general question of the relativity of acceleration.
What have I learned?
1. Coordinate acceleration is relative; proper acceleration is not.
2. Proper acceleration may be experienced while at rest in a coordinate system. (This follows from 1.)
3. Loosely speaking, the experience of proper acceleration corresponds to the experience of an unbalanced force. I think this is in agreement with the definition of proper acceleration as the phenomenon that occurs when there is a non-zero reading on an accelerometer. However, I personally am not a fan of a definition of a fundamental physical phenomenon that requires the use of a mechanism. It seems to me that this leads to getting bogged down in the details of the design of the mechanism. I'd rather talk about the underlying phenomenon that the mechanism is intended to measure. In engineering, we are constantly aware of the difference between theory (the ideal) and practice (the inability to make actual conditions to correspond to the ideal). Defining proper acceleration as the reading on an instrument blurs that distinction, in my opinion.
4. Formally, proper acceleration is the derivative of proper velocity with respect to proper time. I have no idea how proper acceleration can ever be non-zero, because I cannot understand how proper velocity can ever be non-zero, if one defines proper time as the interval between two events at the same location. However, at this point in my education I am content to let this alone (for now).
5. From 3, only non-inertial bodies experience proper acceleration.
6. In the twin paradox, only the rocket twin is non-inertial. Therefore, the Earth twin must have a straight world line in a spacetime diagram, and the rocket twin must have a bent worldline. By spacetime diagram I mean a diagram that charts the coordinate (Lorentz) transformation between inertial frames. I believe this is the same thing as saying Minkowski diagram. The design of the diagram does not allow a non-inertial body to be represented by a straight worldline, nor does it allow an inertial body to be represented by a bent worldline.
7. Also from 5, and illustrated in 6, the rocket twin must experience less elapsed proper time than the Earth twin; there is no treatment of the episode in SR that can result in the Earth twin being younger than the rocket twin.
8. From all the foregoing (with special emphasis on 2), the "absoluteness" of proper acceleration does not contradict the claim of the rocket twin to be at rest throughout the episode. Therefore, the statement that proper acceleration is absolute does not have any "shocking" implications with respect to the general principle of relativity.
9. The case of the rocket twin at rest is treated in the Minkowski diagram. The typical explanation of the twin paradox does not draw attention to this fact, leaving some good-faith objectors unsatisfied with the conclusion that the Earth twin cannot be younger than the rocket twin. Further elaboration on this point will be given in the new thread that I intend to open; this will also be my response to George's concerns.
10. The discussion above is limited to the kinematics of SR. The essentially dynamic state of being non-inertial is recognized in the solution of the problem, but it is not analyzed with respect to the laws of dynamics.
11. [edited for clarity] In my mind, 10 leads to a question. In the intuitive understanding of the universe, the Earth is absolutely at rest. The Earth, as it were, is anchored in place. The impression one gets from popular books on relativity is that the intuitive understanding of the universe may legitimately be claimed by any observer: Every observer may consider himself to be anchored in place.
What are the implications of the rocket twin being anchored in place? Simply this:
How is it that a force applied to the rocket causes the Earth and all the stars to move? Einstein's proposal is that a gravitational field is the cause. Granting that point for the sake of discussion, one must still ask how the rocket produces enough energy to accelerate the immense mass of the Earth and stars at the observed rate.
[Side note: This objection was alluded to by harrylin at one point in this discussion. I believe it is at the root of his claim that few physicists these days accept the idea that the rocket is "really in rest". I find it interesting in this regard (without drawing any conclusions) that DaleSpam says that most physicists these days tend to leave the question of the gravitational field in SR alone.]
Please understand that I am making no claim regarding the validity of the principle of relativity. I am merely stating the question that I wish to be able to answer, and wish (eventually) to be able to verify by calculation.