What is the null space of TΦ for Φ = x over the interval [0,1]?

  • Thread starter Thread starter tavi
  • Start date Start date
  • Tags Tags
    Null space Space
tavi
Messages
1
Reaction score
0
Let V denote the vectore space of continuously differentiable functions, ƒ, over the interval [0,1] such that ƒ(0)=0.
Suppose Φ is-contained C∞ [0,1] (set of infinitely differentiable functions over the interval [0,1]) and define the operator
TΦ:V→R:ƒ→∫ƒ'(x)Φ(x)dx 0,1
Describe the null space of TΦ if Φ = x (Hint: integration by parts)
 
Physics news on Phys.org
Please dont' multiple post.
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top