Reshma
- 749
- 6
A long solenoid with radius 'a' and 'n' turns per unit length carries a time-dependent current I(t) in the \phi direction. Find the electric field (magnitude and direction) at a distance 's' from the axis (both inside and outside the solenoid), in quasi-static approximation.What's quasi-static approximation? Anyway, without much prior thought I applied the flux rule
:
\varepsilon = \int \vec E \cdot d\vec l = -{d\Phi \over dt}
\vec B = \mu_0 nI \hat z, \vec A = \pi a^2 \hat z
\Phi = \mu_0 nI \pi a^2
\int \vec E \cdot d\vec l =-{d ( \mu_0 nI \pi a^2)\over dt}
E2\pi a = -( \mu_0 n \pi a^2){dI\over dt}
Before I proceed to the final step, someone please check my work.

\varepsilon = \int \vec E \cdot d\vec l = -{d\Phi \over dt}
\vec B = \mu_0 nI \hat z, \vec A = \pi a^2 \hat z
\Phi = \mu_0 nI \pi a^2
\int \vec E \cdot d\vec l =-{d ( \mu_0 nI \pi a^2)\over dt}
E2\pi a = -( \mu_0 n \pi a^2){dI\over dt}
Before I proceed to the final step, someone please check my work.