UrbanXrisis
- 1,192
- 1
M = \left(\begin{array}{cc}4&-1 \\ 2&7 \end{array}\right)
I need to show M^n as a formula of entries where n>0:
so say M = \left(\begin{array}{cc}4&-1 \\ 2&7 \end{array}\right) is diagonalizable: M = SDS^{-1}
then M^2=S^2 D^2 S^{-2}
and... M^3=S^3 D^3 S^{-3}
I can see from this that D^n = \left(\begin{array}{cc}\alpha^n&0 \\ 0&\beta^2 \end{array}\right) assuming \alpha= \lambda_1 and that \beta= \lambda_2
\alpha= 5 and \beta= 6
D^n = \left(\begin{array}{cc}5^n&0 \\ 0&6^n \end{array}\right)
so to find S...
\left(\begin{array}{cc}4-\alpha&-1 \\ 2&7-\beta \end{array}\right)
\left(\begin{array}{cc}-1&-1 \\ 2&2 \end{array}\right)
v_1= \left(\begin{array}{c}1\\ -1 \end{array}\right)
\left(\begin{array}{cc}2&1 \\ 2&1 \end{array}\right)
v_2= \left(\begin{array}{c}1\\ -2 \end{array}\right)
S = \left(\begin{array}{cc}1&1 \\-1&-2 \end{array}\right)
det(S)=-1
S^{-1} = \left(\begin{array}{cc}-1&-1 \\1&2 \end{array}\right)
this is where I am stuck, i don't know how to get S^n or S^-n
any ideas?
I need to show M^n as a formula of entries where n>0:
so say M = \left(\begin{array}{cc}4&-1 \\ 2&7 \end{array}\right) is diagonalizable: M = SDS^{-1}
then M^2=S^2 D^2 S^{-2}
and... M^3=S^3 D^3 S^{-3}
I can see from this that D^n = \left(\begin{array}{cc}\alpha^n&0 \\ 0&\beta^2 \end{array}\right) assuming \alpha= \lambda_1 and that \beta= \lambda_2
\alpha= 5 and \beta= 6
D^n = \left(\begin{array}{cc}5^n&0 \\ 0&6^n \end{array}\right)
so to find S...
\left(\begin{array}{cc}4-\alpha&-1 \\ 2&7-\beta \end{array}\right)
\left(\begin{array}{cc}-1&-1 \\ 2&2 \end{array}\right)
v_1= \left(\begin{array}{c}1\\ -1 \end{array}\right)
\left(\begin{array}{cc}2&1 \\ 2&1 \end{array}\right)
v_2= \left(\begin{array}{c}1\\ -2 \end{array}\right)
S = \left(\begin{array}{cc}1&1 \\-1&-2 \end{array}\right)
det(S)=-1
S^{-1} = \left(\begin{array}{cc}-1&-1 \\1&2 \end{array}\right)
this is where I am stuck, i don't know how to get S^n or S^-n
any ideas?
Last edited: