Shell's Method: Solids of Rotation, Torus

teken894
Messages
25
Reaction score
0

Homework Statement



Volume of Torus: using Shell's mehod

4\pi \int^{1}_{-1}((R-x) \sqrt{r^2 - x^2})dx

Homework Equations


The Attempt at a Solution



I don't know how to integrate this at all. I cannot use any conventional methods...or I can't think of a way... i.e. use isolate a function as u and try to integrate wrt du

Is the only way to distribute the equation first?
 
Last edited:
Physics news on Phys.org
try trig substitution, e.g. x=rcost or x=rsint. i did not complete it myself but that should work. after that you may need to do integration by parts. don't forget dx changes too, as does -1 and 1.
 
Last edited:
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top