How to write this in terms of epsilon and deltas?

  • Thread starter Thread starter InbredDummy
  • Start date Start date
  • Tags Tags
    Epsilon Terms
InbredDummy
Messages
82
Reaction score
0
How do I write that given a set S, every epsilon neighborhood of infinity (in the complex plane) contains at least one point of S?
 
Physics news on Phys.org
I do not understand the question?
What is S? And what does it mean "epsilon neighborghood of infinite".

And you statement is clearly wrong given that S is empty.
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top