Dielectric sphere - Find the electric field

Qyzren
Messages
41
Reaction score
0
Consider a dielectric sphere of radius R and dielectric constant e_r. The sphere contains
free charges that have been uniformly distributed with density rho.

(a) Show that electric field inside the sphere is given by
E = [rho*r /(3*e_0*e_r)]* r hat

where r hat is the unit vector pointing in the radial direction.

(b) Show that the electric field outside the sphere is
E = [rho*R³]/[3*e_0*r²] * r hat

(c) Calculate the potential V at the centre of the sphere compared to that at infinity.

Any tips/hints that can help start me off will be appreciated.
 
Physics news on Phys.org
Start with Gauss' law. Try to calculate how E varies with the radius of your spherical Gaussian surface.

Claude.
 
well gauss' law is just integral of E.dA = Q/e_0 since we have a sphere the SA is just 4*pi*r^2 so it gives E = Q/[4*pi*e_0*R^2].

How does the density rho and dielectric constant e_r affect/influence this?

Thanks everyone for helping.
 
Qyzren said:
well gauss' law is just integral of E.dA = Q/e_0 since we have a sphere the SA is just 4*pi*r^2 so it gives E = Q/[4*pi*e_0*R^2].

How does the density rho and dielectric constant e_r affect/influence this?

Thanks everyone for helping.

Use the Guass's law in presence of dielectrics.
Within the dielectric the total charge density can be written as:
\rho = \rho_b + \rho_f
where \rho_b[/tex] is the bound charge and \rho_f is the free charge density resp.<br /> The Gauss&#039;s law will be modified accordingly. Read up on the <b>electric displacement</b> vector and you can easily find the solution.
 
Qyzren said:
well gauss' law is just integral of E.dA = Q/e_0 since we have a sphere the SA is just 4*pi*r^2 so it gives E = Q/[4*pi*e_0*R^2].

How does the density rho and dielectric constant e_r affect/influence this?

It influences it because you don't know what Q is. As you have written it Q is the source of the electric field E, i.e. the true and total Q (both bound and otherwise). But you don't know Q because you only know the *free* charge density.

Luckily, gauss' law will work for the electric displacement too with
<br /> \int \vec D \cdot \vec dA = Q_{\textrm{free}}^{\textrm{enclosed}}<br />
 
Last edited:
...and you also have the definition (for a linear dielectric) that
<br /> \epsilon_r\epsilon_0 \vec E = \vec D<br />

So, use what's in my first post to solve for D and then just divide to get E

...I might not have all the factors right since I am used to using Guassian units... but I think I got the placements of the epsilons correct...
 
##|\Psi|^2=\frac{1}{\sqrt{\pi b^2}}\exp(\frac{-(x-x_0)^2}{b^2}).## ##\braket{x}=\frac{1}{\sqrt{\pi b^2}}\int_{-\infty}^{\infty}dx\,x\exp(-\frac{(x-x_0)^2}{b^2}).## ##y=x-x_0 \quad x=y+x_0 \quad dy=dx.## The boundaries remain infinite, I believe. ##\frac{1}{\sqrt{\pi b^2}}\int_{-\infty}^{\infty}dy(y+x_0)\exp(\frac{-y^2}{b^2}).## ##\frac{2}{\sqrt{\pi b^2}}\int_0^{\infty}dy\,y\exp(\frac{-y^2}{b^2})+\frac{2x_0}{\sqrt{\pi b^2}}\int_0^{\infty}dy\,\exp(-\frac{y^2}{b^2}).## I then resolved the two...
Hello everyone, I’m considering a point charge q that oscillates harmonically about the origin along the z-axis, e.g. $$z_{q}(t)= A\sin(wt)$$ In a strongly simplified / quasi-instantaneous approximation I ignore retardation and take the electric field at the position ##r=(x,y,z)## simply to be the “Coulomb field at the charge’s instantaneous position”: $$E(r,t)=\frac{q}{4\pi\varepsilon_{0}}\frac{r-r_{q}(t)}{||r-r_{q}(t)||^{3}}$$ with $$r_{q}(t)=(0,0,z_{q}(t))$$ (I’m aware this isn’t...
Hi, I had an exam and I completely messed up a problem. Especially one part which was necessary for the rest of the problem. Basically, I have a wormhole metric: $$(ds)^2 = -(dt)^2 + (dr)^2 + (r^2 + b^2)( (d\theta)^2 + sin^2 \theta (d\phi)^2 )$$ Where ##b=1## with an orbit only in the equatorial plane. We also know from the question that the orbit must satisfy this relationship: $$\varepsilon = \frac{1}{2} (\frac{dr}{d\tau})^2 + V_{eff}(r)$$ Ultimately, I was tasked to find the initial...
Back
Top