azatkgz
- 182
- 0
Suppose that a_n\geq 0 and there is
\lim_{n\rightarrow\infty}\frac{a_{n+1}}{a_n}=c
If c>1,series diverges.
if c<1 series converges.
For a_n=\frac{n!}{n^n}
\lim_{n\rightarrow\infty}\frac{(n+1)!/(n+1)^{n+1}}{n!/n^n}
\lim_{n\rightarrow\infty}\frac{n^n}{(n+1)^n}
Then I used I'Hopital Rule and got answer 1.
\lim_{n\rightarrow\infty}\frac{a_{n+1}}{a_n}=c
If c>1,series diverges.
if c<1 series converges.
For a_n=\frac{n!}{n^n}
\lim_{n\rightarrow\infty}\frac{(n+1)!/(n+1)^{n+1}}{n!/n^n}
\lim_{n\rightarrow\infty}\frac{n^n}{(n+1)^n}
Then I used I'Hopital Rule and got answer 1.
Last edited: