Analysis of a_n Series: Convergence or Divergence?

azatkgz
Messages
182
Reaction score
0
Suppose that a_n\geq 0 and there is

\lim_{n\rightarrow\infty}\frac{a_{n+1}}{a_n}=c
If c>1,series diverges.
if c<1 series converges.

For a_n=\frac{n!}{n^n}

\lim_{n\rightarrow\infty}\frac{(n+1)!/(n+1)^{n+1}}{n!/n^n}

\lim_{n\rightarrow\infty}\frac{n^n}{(n+1)^n}

Then I used I'Hopital Rule and got answer 1.
 
Last edited:
Physics news on Phys.org
I think you'd better check your l'Hopital. Your final limit is closely related to the limit of (1+1/n)^n, which is a famous limit and is not one.
 
Last edited:
A,yes I get it.


\lim_{n\rightarrow\infty}\frac{1}{(1+\frac{1}{n})^n}=\frac{1}{e}
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...

Similar threads

Back
Top