Proving Convergence of Sum(a_n)^2: Examples & Explanation

  • Thread starter Thread starter fk378
  • Start date Start date
  • Tags Tags
    Example Proof
fk378
Messages
366
Reaction score
0

Homework Statement


Prove that if a_n>or equal to 0, and sum(a_n) converges, then sum(a_n)^2 also converges.


The Attempt at a Solution


The only example I can think of is 1/(n^p) where p is any exponent greater than 1. Are there any other examples that I can use or do I only need to use this example to prove it?
 
Physics news on Phys.org
I don't think you can prove something by example.
 
If sum(a_n) converges then there must be an N such that for n>=N, a_n<=1, right? sum(a_n) for n>=N converges. Do a comparison test between a_n and a_n^2 for n>=N.
 
Last edited:
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...

Similar threads

Back
Top