Measuring Moment of Inertia of RC Helicopter

AI Thread Summary
The discussion focuses on measuring the moment of inertia of a remote-controlled helicopter around its principal axes at the center of gravity. The original poster seeks an experimental setup and method, referencing equations that relate angular accelerations to moments and moments of inertia. They propose rotating the helicopter on a table but express concerns about accurately measuring torque if the table rotates at a constant rate. The helicopter will be equipped with gyros and accelerometers for data collection. Additional resources, including papers from Space Electronics, are recommended for further guidance on measuring these properties.
williamshipman
Messages
24
Reaction score
0
Hi guys.

I am trying to measure the moment of inertia of a remote controlled helicopter about its 3 principle axes at the centre of gravity. In all of the literature I have read relating to this project, everyone just glosses over this part. What I need to figure out is an experimental setup and method.

I have the following 3 equations that relate the moment about each axis and the 3 angular velocities to the angular accelerations. All of these equations are with respect a fixed axis system centred at the centre of gravity.
p_dot=M_x/I_xx -rq/I_xx (I_zz-I_yy )
q_dot=M_y/I_yy -rp/I_yy (I_xx-I_zz )
r_dot=M_z/I_zz -pq/I_zz (I_yy-I_xx )

p_dot, q_dot and r_dot are the angular accelerations. The angular velocities are p (roll), q (pitch) and r (yaw). The moments about each axis are M_x, M_y and M_z and the moments of inertia are I_xx, I_yy and I_zz.

So far, I have thought of putting the helicopter on a table and rotating it about one axis, then repeating the procedure for the other 2 axes. This has the small problem that, if the table rotates at a constant rate, the dot terms are zero. If the table is accelerating, then this could work but how would I know what the torque applied to the helicopter is?

I forgot to mention, the helicopter will be fitted with gyros to measure the orientation and accelerometers for the linear and angular accelerations. Thanks for your help.
 
Engineering news on Phys.org


It's not the easiest way to do things, but it is definitely doable. I guess it all boils down to how accurate you want to get. You can measure the principal axes via the method in the attached article. The off diagonal elements you can then calculate.

Go to this thread for the article:
https://www.physicsforums.com/showthread.php?t=222753
 


Thanks very much for the info Fred, that was exactly what I was looking for.
 


Its now a few months later and I thought I'd post this. FredGarvin gave a paper from Space Electronics in the other thread he links to. Space Electronics has published a number of other papers on their website that explain how to measure various properties, like the moment of inertia and center of gravity. Anyone who is struggling with such work should look at their website http://www.space-electronics.com" .
 
Last edited by a moderator:
Hi all, I have a question. So from the derivation of the Isentropic process relationship PV^gamma = constant, there is a step dW = PdV, which can only be said for quasi-equilibrium (or reversible) processes. As such I believe PV^gamma = constant (and the family of equations) should not be applicable to just adiabatic processes? Ie, it should be applicable only for adiabatic + reversible = isentropic processes? However, I've seen couple of online notes/books, and...
Thread 'How can I find the cleanout for my building drain?'
I am a long distance truck driver, but I recently completed a plumbing program with Stratford Career Institute. In the chapter of my textbook Repairing DWV Systems, the author says that if there is a clog in the building drain, one can clear out the clog by using a snake augur or maybe some other type of tool into the cleanout for the building drain. The author said that the cleanout for the building drain is usually near the stack. I live in a duplex townhouse. Just out of curiosity, I...
I have an engine that uses a dry sump oiling system. The oil collection pan has three AN fittings to use for scavenging. Two of the fittings are approximately on the same level, the third is about 1/2 to 3/4 inch higher than the other two. The system ran for years with no problem using a three stage pump (one pressure and two scavenge stages). The two scavenge stages were connected at times to any two of the three AN fittings on the tank. Recently I tried an upgrade to a four stage pump...
Back
Top