Vector space of the product of two matrices

redjoker
Messages
5
Reaction score
0
I'm trying to prove (as part of a larger proof) that the product of a m x n matrix M with column space R^m and a n x o matrix N with column space R^n, MN, has column space R^m. I'm not sure where to begin. What I'm thinking should be the right approach is to show that any solution to M augmented with a vector v = (a_1, ..., a_m) can be tweaked to be a solution for MN, though I haven't been able to get there. Any suggestions?
 
Physics news on Phys.org
Did you really mean column space R^m for mxn matrix M and col space R^n for nxo matrix N ? Or was it supposed to be R^n for the former since matrix M has n columns?
 
Yeah I meant column space. The assumption is that m,n,o form a non-decreasing sequence.
 
Thread 'Derivation of equations of stress tensor transformation'
Hello ! I derived equations of stress tensor 2D transformation. Some details: I have plane ABCD in two cases (see top on the pic) and I know tensor components for case 1 only. Only plane ABCD rotate in two cases (top of the picture) but not coordinate system. Coordinate system rotates only on the bottom of picture. I want to obtain expression that connects tensor for case 1 and tensor for case 2. My attempt: Are these equations correct? Is there more easier expression for stress tensor...
Back
Top