sunjen said:
In this experiment there is no interference without doing coincidence counting, but in the original double slit experiments the interference pattern is shown.
So why is that, what is the difference between the two?
Well the key to interference phenomena is indistinguishability of some sort. Comparing the simple double slit to quantum eraser experiments, you will notice, that we are talking about two different kinds of indistinguishability here.
The usual double slit uses the fact, that there is a fixed phase relationship of the incident light at both slits. If the phases at both slits were completely independent of each other, this would be some kind of which way information and the interference pattern would disappear. In order to avoid this, you need light, which is at least a bit coherent: The coherence length needs to be at least as large as the slit separation is. The light, which comes out of a BBO crystal used for spontaneous parametric down converion is rather incoherent. However one can increase the coherence length by putting the BBO crystal far away from the double slit. This equals choosing a small subset of wave vectors (or equivalently emission angles), which actually make it to the double slit, so the phase relationship at the double slit is better defined.
Quantum erasers and the like use indistinguishability of two-photon amplitudes. In this case the phase relationship of the two-photon state is well defined as the wave vectors of the two photons are correlated due to conservation of momentum. The detector D0 is positioned in the focal plane, so that each point inside the focal plane corresponds to exactly one wave vector. If the detector is small enough, this is a rather precise measurement of the photon wave vector.
Now the other entangled photon hits a double slit or some other kind of similar setup like in the paper you quoted. The light hitting this double slit is alone not coherent enough to show an interference pattern as there are plenty of different wave vectors arriving. However, if we detect a photon at the other detector, we measured the wave vector and therefore the wavevector of the other photon is pretty well defined due to conservation of momentum. So the subset of these joint detections has a clearly defined wave vector and therefore there will be some kind of interference effect in the coincidence counts.
However, to actually see an interference pattern in the coincidence counts at D0, you need a rather large spread of wave vectors, as every position in the plane corresponds to one certain wave vector. So the more wave vectors you include, the better will the visibility of your interference pattern be.
Now one sees that finding interference in the usual double slit needs a small spread in the wave vectors (which can be achieved by using a huge distance between light source and double slit) and finding interference effects in coincidence counting experiments needs a large spread in the wave vectors (which can be achieved by using a small distance between light source and double slit). As you can't have a small and a large distance simultaneously, both kinds of interference are complementary, so you can't have both at the same time with full visibility.