Finding g(t) with Laplace Transform of G(S)

goodtime
Messages
1
Reaction score
0
G(S)=2/s(e^-3s_e^-4s)

G(S)=(2S+1/S^2)*e^-2s_(3s+1/s^2)*e-3s


find g(t)?
 
Physics news on Phys.org
goodtime said:
G(S)=2/s(e^-3s_e^-4s)

G(S)=(2S+1/S^2)*e^-2s_(3s+1/s^2)*e-3s


find g(t)?
First off, what work have you already done?
Second, what operation does '_' represent in e^-3s_e^-4s? If it's multiplication, you can write it as (e^(-3s)*e^(-4s))
Third, without parentheses, it's difficult to tell what's in the numerator of a rational expression, and what's in the denominator. E.g., does (2S + 1/S^2) in your second problem mean
2S + \frac{1}{S^2}
or
\frac{2S + 1}{S^2}?
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top