Gradient of f: R^2 -> R Defined by Integral Equation

  • Thread starter Thread starter johnson12
  • Start date Start date
  • Tags Tags
    Gradient
johnson12
Messages
18
Reaction score
0
Define f: R^{2} \rightarrow R , by f(x,y) = \int^{sin(x sin(y sin z))}_{a} g(s) ds


where g:R -> R is continuous. Find the gradient of f.


I tried using the FTC, and differentiating under the integral, but did not get anywhere,

thanks for any suggestions.
 
Physics news on Phys.org
Yes, the FTC, together with the chain rule should work. Basically, you are saying that
f(x,y)= \int_0^u(x,y) g(s)ds
where u(x,y)= x sin(x sin(y sin(x))).
\frac{df}{du}= g(u)
and
\frac{\partial f}{\partial x}= g(u)\frac{\partial u}{\partial x}
\frac{\partial f}{\partial y}= g(u)\frac{\partial u}{\partial y}

So the question is really just: What are \partial u/\partial x and \partial u/\partial yf?
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top