Thermal Physics: Evaluating Limits at Zero Temperature

  • Thread starter Thread starter Niles
  • Start date Start date
  • Tags Tags
    Limits Term
Niles
Messages
1,834
Reaction score
0

Homework Statement


Hi all.

Please take a look at this expression, where T is our variable (it represents temperature):

<br /> C_v = 2\left( {\frac{{\hbar \omega }}{T}} \right)^2 \frac{{\exp \left( {\frac{{\hbar \omega }}{T}} \right)}}{{\left( {\exp \left( {\frac{{\hbar \omega }}{T}} \right) - 1} \right)^2 }}.<br />

I have to evaluate this for T \rightarrow 0. I would use L'Hopital, but isn't there an easier way? Because when I differentiate the nominator (the top), then I will end up with an expression like the original nominator, which won't help me.

Thanks in advance.


Niles.
 
Physics news on Phys.org
Thermal physics correct?

I had some sort of this question, it goes like this:
change variables, to dimensionless i.e x=hbar*w/T
so you now evaluate:
lim_{x\leftarrow \infty} 2x^2(\frac{e^x}{(e^x-1)^2})
Other than L'hopital twice there isn't any other approach.
 
Yeah, thermal physics :smile:

Thanks!
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top