daudaudaudau
- 297
- 0
Hello.
How can I prove something like
<br /> \nabla\cdot(\mathbf fv)=(\nabla v)\cdot\mathbf f+v(\nabla\cdot \mathbf f)<br />
using only the definition of divergence
<br /> \text{div}\mathbf V=\lim_{\Delta v\rightarrow0}\frac{\oint_S\mathbf V\cdot d\mathbf s}{\Delta v},<br />
i.e. without referring to any particular coordinate system? I have yet to see a book that does not assume cartesian coordinates.
How can I prove something like
<br /> \nabla\cdot(\mathbf fv)=(\nabla v)\cdot\mathbf f+v(\nabla\cdot \mathbf f)<br />
using only the definition of divergence
<br /> \text{div}\mathbf V=\lim_{\Delta v\rightarrow0}\frac{\oint_S\mathbf V\cdot d\mathbf s}{\Delta v},<br />
i.e. without referring to any particular coordinate system? I have yet to see a book that does not assume cartesian coordinates.