Taylor expansion-multivariable calculus(basic question)

  • Thread starter Thread starter penguin007
  • Start date Start date
  • Tags Tags
    Taylor
penguin007
Messages
75
Reaction score
0
What's the Taylor expansion of F(x,y,z) in the neighborhood of (a,b,c)?

Thank you
 
Physics news on Phys.org
Just extend the Taylor's expansion for functions of one variable.

For any n, let i, j, k be any non negative integers such that i+ j+ k= n.

One term in the Taylor's expansion, about (x_0,y_0,z_0), is
\frac{1}{n!}\frac{\partial f}{\partial x^i\partial y^j\partial z^k}[/itex](x- x_0)^i(y- y_0)^j(z- z_0)^k.<br /> The entire Taylor&#039;s expansion is the sum for n= 0 to infinity, of the sum of all such terms for all &quot;partitions&quot; of n.<br /> <br /> Specifically, the &quot;0&quot; term has only i= j= k= 0 and is f(x_0,y_0,z_0). For n= 1, we have i=1, j= k= 0 so \partial f/\partial x(x_0,y_0,z_0)(x- x_0)+ \partial f/\partial y (x- y_0)+ \partial f/\partial z(x_0,y_0,z_0)(z- z_0). The second order terms are (1/2)\partial^2f/\partial x^2 (x_0,y_0,z_0)(x- x_0)^2+ (1/2)\partial^2 f/\partial y^2(x_0,y_0,z_0)(y- y_0)^2+ (1/2)\partial^2 f/\partial z (x_0,y_0,z_0)(z-z_0)^2+ (1/2)\partial f^2/\partial x\partial y(x_0,y_0,z_0)(x-x_0)(y-y_0)+(1/2)\partial f^2/\partial x_0\partial z_0(x_0,y_0,z_0)(x-x_0)(z-z_0)+ (1/2)\partial f^2/\partial y_0\partial z_0(x_0,y_0,z_0)(y-y_0)(z-z_0).<br /> <br /> Do you get the idea? &quot;3&quot; can be partitioned as 3+ 0+ 0, 2+ 1+ 0, 2+ 0+ 1, 1+ 2+ 0, 1+ 0+ 2, 1+ 1+ 1, 0+ 3+ 0, 0+ 0+ 3, 0+ 1+ 2, and 0+ 2+ 1 so there are (if I counted correctly) 10 third degree terms
 
Last edited by a moderator:
Thanks a lot HallsofIvy for this clear explanation!
I got the idea.
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top