Fourier transform of a gaussian

sleventh
Messages
61
Reaction score
0
fourier transform of the gaussian (1/\sqrt{2 pi \sigma}) e ^ (^{x^2/2\sigma^2})



now the Fourier of a gaussian is said to equal another gaussian as shown by equation (4) here:
http://mathworld.wolfram.com/FourierTransform.html

but when i also did it using equation (1) here:
http://mathworld.wolfram.com/FourierTransform.html

i find a completely different answer.

im wondering how i am doing the calculations wrong using the normal definition of Fourier transforms.

fourier transforms are very new to me so any help is much appreciated thank you.
 
Physics news on Phys.org
you'll have more chance if you show you working, its pretty hard to guess what you're doing wrong
 
setting a=1/2 \sigma ^2 and k=1/2\sqrt{2 pi sigma} i use the concept the Fourier of a gaussian equals another gaussian and am given
\sqrt{2 sigma ^2 pi} e^((-2pi^2 \sigma^2 / \sqrt{2 pi sigma}
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top