Second order DE in matrix form

teapsoon
Messages
1
Reaction score
0

Homework Statement



Consider the differential equation \bold{x}'=\left[ \begin{array}{cc} -1 & 2 \\ -1 & -3 \end{array} \right]\bold{x}, with \bold{x}(0)=\left[ \begin{array}{c} 1 \\ 1 \end{array} \right]

Solve the differential equation where \bold{x}=\left[ \begin{array}{c} x(t) \\ y(t) \end{array} \right].

solving for the x vector and y vector

Homework Equations





The Attempt at a Solution

 
Physics news on Phys.org
teapsoon said:

Homework Statement



Consider the differential equation \bold{x}'=\left[ \begin{array}{cc} -1 & 2 \\ -1 & -3 \end{array} \right]\bold{x}, with \bold{x}(0)=\left[ \begin{array}{c} 1 \\ 1 \end{array} \right]

Solve the differential equation where \bold{x}=\left[ \begin{array}{c} x(t) \\ y(t) \end{array} \right].

solving for the x vector and y vector

Homework Equations





The Attempt at a Solution


I added [ tex] and [/ tex] tags (without leading spaces inside the brackets).

What have you tried? Do you have any ideas for how you might solve this system of equations?
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top