Calculating Vessel Depressurization: What Factors Affect the Time Required?

  • Thread starter Thread starter mdvalhe
  • Start date Start date
  • Tags Tags
    Vessel
AI Thread Summary
Calculating the time required for vessel depressurization involves complex factors such as mass flow rate, volumetric flow rate, and the characteristics of the gas and orifice. The transition from choked flow to free flow, along with cooling effects and changing pressure, complicates the calculations. Accurate results may require solving differential equations of fluid flow or using empirical equations for estimates. Specific geometries, like a simple hole, can yield more reliable data than modeling a crack. Advanced modeling tools like ANSYS or NASTRAN may be necessary for precise analysis due to the interplay of thermodynamics and fluid dynamics.
mdvalhe
Messages
1
Reaction score
0
Hi,

I want to know how I calculate the mass flow rate, volumetric flow rate and time required to depressurize a vessel, knowing the pressure inside the vessel, the output pressure, the orifice and the gas characteristics.

For example, imagine a vessel full of compressed air (let’s say 10 bar, 10 m3), for any reason the vessel fail, a known orifice is formed (model for a crack, 10 mm diameter), how long will take for the pressure inside to equalize the atmospheric pressure.

Thank you
 
Engineering news on Phys.org
This problem is more dificult than you might think, due to several coupled properties. The gas is cooling, the pressure is changing, and it's likely the flow will transition from choked flow to free flow. If you describe the differential equations of the fluid flow accurately, you can probably solve it with a robust solver package. Otherwise, you'll have to go with some reasonable estimate based on empirically derived equations.

Here is a thread here on this exact subject which gives a few suggestions: https://www.physicsforums.com/showthread.php?t=341015
 
mdvalhe said:
Hi,

I want to know how I calculate the mass flow rate, volumetric flow rate and time required to depressurize a vessel, knowing the pressure inside the vessel, the output pressure, the orifice and the gas characteristics.

For example, imagine a vessel full of compressed air (let’s say 10 bar, 10 m3), for any reason the vessel fail, a known orifice is formed (model for a crack, 10 mm diameter), how long will take for the pressure inside to equalize the atmospheric pressure.

Thank you

After the crack propogates and the vessel explosively decompresses...

...about half a second.

Seriously, "a crack" involves many orders of magnitude of variance, with answers ranging from between a few seconds to a few days. You're going to have to be more specific, and I'd recommend focussing on known geometries, such as a simple hole, or a tube of length L and diameter D protruding through the vessel wall.
 
As stated above, getting results for a crack isn't easy to do. You would have to calculate the crack opening displacements, then calculate the conductance based on the geometry and fluid dynamics.

I looked at the abstract of the paper titled "Circulation in Blowdown Flows," and they point out some interesting facts. Heat transfer between the gas and container walls creates a radial temperature gradient in the vessel, and buoyancy driven flow recirculates the gas. You're talking about stress analysis, fracture mechanics, thermodynamics, and CFD in one problem. I think you would need to do some heavy duty modelling with ANSYS or NASTRAN to get realistic results.
 
Last edited:
Thread 'Turbocharging carbureted petrol 2 stroke engines'
Hi everyone, online I ve seen some images about 2 stroke carbureted turbo (motorcycle derivation engine). Now.. In the past in this forum some members spoke about turbocharging 2 stroke but not in sufficient detail. The intake and the exhaust are open at the same time and there are no valves like a 4 stroke. But if you search online you can find carbureted 2stroke turbo sled or the Am6 turbo. The question is: Is really possible turbocharge a 2 stroke carburated(NOT EFI)petrol engine and...
I need some assistance with calculating hp requirements for moving a load. - The 4000lb load is resting on ball bearing rails so friction is effectively zero and will be covered by my added power contingencies. Load: 4000lbs Distance to travel: 10 meters. Time to Travel: 7.5 seconds Need to accelerate the load from a stop to a nominal speed then decelerate coming to a stop. My power delivery method will be a gearmotor driving a gear rack. - I suspect the pinion gear to be about 3-4in in...
Back
Top