How Can You Integrate Complex Fractions Like This One?

heisgirl20
Messages
1
Reaction score
0
http://www.freeimagehosting.net/image.php?9722bd5444.png

Link: http://www.freeimagehosting.net/image.php?9722bd5444.png"

I've tried to used integration by parts and u substitution and I've also tried just multiplying the fraction by the denominator (6-x)^(1/2) but I am still confused at how to approach this.
 
Last edited by a moderator:
Physics news on Phys.org


Multiply and divide by \sqrt{6+x}.
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top