Find the derivative of the vector function

xstetsonx
Messages
78
Reaction score
0
Find the derivative of the vector function r(t) = ta x (b + tc)
a=<-2,2,-1> b=<-1,1,1> c=<-2,2,4>


I know r(t)=ta x (b + tc)=(axb)t+(axc)t^2
then i got lost
 
Physics news on Phys.org
Hi xstetsonx! :smile:

(try using the X2 tag just above the Reply box :wink:)
xstetsonx said:
I know r(t)=ta x (b + tc)=(axb)t+(axc)t^2

ok, now differentiate wrt t. :smile:
 
don't know how because they are all numbers. Should i do the cross product or what do i do?
 
uhh? everything except t is a constant :confused:
 
Everything except t is a constant vector. t is the only numeric variable in the problem.
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top