Probability values and z scores

  • Thread starter Thread starter nellas
  • Start date Start date
  • Tags Tags
    Probability
nellas
Messages
1
Reaction score
0
Can someone explain how to do this. I am totally stuck.
How do you find the z score of you are given the probability? I understand and can calculate the p value from the z score but cannot seem to do it in the opposite direction
Thanks
 
Physics news on Phys.org
Look up the probability in the "probability" column of the table and take the corresponding z-score. If you are using a software package, look for something like NORMINV, the inverse normal distribution function.
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top