hasan_researc
- 166
- 0
Homework Statement
\int\frac{dx}{(R^{2}+x^{2})^{3/2}}
Homework Equations
The Attempt at a Solution
\mbox{Let }x = R\\tan\theta \Rightarrow dx = R\\sec^{2}d\theta
x^{2} = R^{2}\\tan^{2}\theta
\Rightarrow R^{2} + x^{2} = R^{2}\\( 1 + tan^{2}\theta)
\Rightarrow R^{2} + x^{2} = R^{2}\\sec^{2}
\Rightarrow (R^{2} + x^{2})^{3/2} = R^{3}\\sec^{3}\theta
\mbox{Therefore, }\int\frac{dx}{(R^{2}+x^{2})^{3/2}}
=\int\frac{R\\sec^{2}\theta}{R^{3}\\sec^{3}\theta}\\d\theta
=\frac{1}{R^{2}}\\ \int^{\infty}_{-\infty}cos\theta\\ d\theta
=\frac{1}{R^{2}}\stackrel{lim}{n\rightarrow\infty} \int^{N}_{-N}cos\theta\\ d\theta
=\frac{1}{R^{2}}\stackrel{lim}{n\rightarrow\infty}(sin\theta)\mid^{N}_{-N}
=\frac{1}{R^{2}}\stackrel{lim}{n\rightarrow\infty}(mbox{sin N + sin N})
=\frac{2}{R}\stackrel{lim}{n\rightarrow\infty}mbox{sin N}
and then?