Linear Algebra Standard Matrix

Screwdriver
Messages
125
Reaction score
0

Homework Statement



Let \vec{u}\neq 0 be a vector in \mathbb{R}^2 and let

T:\mathbb{R}^2 \to \mathbb{R}^2 be described by

T:\vec{v} \to proj_{\vec{u}}(\vec{v})

If \vec{u}=[1,-1]

Find the standard matrix for T

Homework Equations



proj_{\vec{u}}(\vec{v})= \frac{\vec{v}\cdot\vec{u} }{\vec{u}\cdot\vec{u}}\vec{u}

The Attempt at a Solution



Determine where T sends \vec{e_1} and \vec{e_2}

f(\vec{e_1})= \frac{\vec{e_1}\cdot\vec{u} }{\vec{u}\cdot\vec{u}}\vec{u}

f(\vec{e_1})= \frac{[1,0]\cdot [1,-1]}{[1,-1]\cdot [1,-1]}

f(\vec{e_1})= [\frac{1}{2},-\frac{1}{2}]

f(\vec{e_2})= \frac{\vec{e_2}\cdot\vec{u} }{\vec{u}\cdot\vec{u}}\vec{u}

f(\vec{e_2})= \frac{[0,1]\cdot [1,-1]}{[1,-1]\cdot [1,-1]}

f(\vec{e_2})= [-\frac{1}{2},\frac{1}{2}]

So does that mean that the standard matrix is

<br /> \begin{bmatrix}<br /> \frac{1}{2} &amp; -\frac{1}{2} \\ <br /> -\frac{1}{2} &amp; \frac{1}{2} \\<br /> \end{bmatrix}<br />

?

[Edited twice for LaTex mistakes]
 
Last edited:
Physics news on Phys.org
Seems correct!
 
This is correct, although your derivation in section 3 has a typo: the fourth through sixth equations should begin with f(\vec{e}_2) rather than f(\vec{e}_1).

It's easier to see where this operation should send the unit vectors by drawing a picture.
 
Pretty much okay I'd say.
 
Thank you, gentlemen. We just learned all this crazy stuff about matrix transformations and I'm still a little iffy on the concept :biggrin:
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top