Screwdriver
- 125
- 0
Homework Statement
Let \vec{u}\neq 0 be a vector in \mathbb{R}^2 and let
T:\mathbb{R}^2 \to \mathbb{R}^2 be described by
T:\vec{v} \to proj_{\vec{u}}(\vec{v})
If \vec{u}=[1,-1]
Find the standard matrix for T
Homework Equations
proj_{\vec{u}}(\vec{v})= \frac{\vec{v}\cdot\vec{u} }{\vec{u}\cdot\vec{u}}\vec{u}
The Attempt at a Solution
Determine where T sends \vec{e_1} and \vec{e_2}
f(\vec{e_1})= \frac{\vec{e_1}\cdot\vec{u} }{\vec{u}\cdot\vec{u}}\vec{u}
f(\vec{e_1})= \frac{[1,0]\cdot [1,-1]}{[1,-1]\cdot [1,-1]}
f(\vec{e_1})= [\frac{1}{2},-\frac{1}{2}]
f(\vec{e_2})= \frac{\vec{e_2}\cdot\vec{u} }{\vec{u}\cdot\vec{u}}\vec{u}
f(\vec{e_2})= \frac{[0,1]\cdot [1,-1]}{[1,-1]\cdot [1,-1]}
f(\vec{e_2})= [-\frac{1}{2},\frac{1}{2}]
So does that mean that the standard matrix is
<br /> \begin{bmatrix}<br /> \frac{1}{2} & -\frac{1}{2} \\ <br /> -\frac{1}{2} & \frac{1}{2} \\<br /> \end{bmatrix}<br />
?
[Edited twice for LaTex mistakes]
Last edited: