How Does Symmetry Impact the Derivative in Tensor Calculations?

  • Thread starter Thread starter adriang
  • Start date Start date
adriang
Messages
10
Reaction score
0

Homework Statement


If \phi=a_{rs}x^{r}x^{s}
Then show that \frac{\partial\phi}{\partial x^{r}}=(a_{rs}+a_{sr})x^{s}

Homework Equations





The Attempt at a Solution


Help please I can't seem to get the correct answer. Thanks
 
Physics news on Phys.org
hi adriang! :smile:

you have to remember that once you've summed over an index, you can't use it again! :rolleyes:

in this case, you can't write ∂/∂xr (arsxrxs) …

instead try writing ∂/∂xr (aqsxqxs) :wink:
 
ah thanks tim lol silly me..
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top