Example of functions satisfying differentiation properties

kathrynag
Messages
595
Reaction score
0
Suppose the function
f has the following four properties:
1. f is continuous for x >=0;

2.
f'(x) exists for x > 0;

3.
f(0) = 0;

4.
f'is monotonically increasing.

I'm just looking for functions that have these 4 properties to better understand what f represents.
So far, I came up with x^2 and x^3, but was looking for more examples. I'm just looking for examples so I can graph these and see a graphical representation. I was getting stuck on good functions to use.
 
Physics news on Phys.org
kathrynag said:
Suppose the function
f has the following four properties:
1. f is continuous for x >=0;

2.
f'(x) exists for x > 0;

3.
f(0) = 0;

4.
f'is monotonically increasing.

I'm just looking for functions that have these 4 properties to better understand what f represents.
So far, I came up with x^2 and x^3, but was looking for more examples. I'm just looking for examples so I can graph these and see a graphical representation. I was getting stuck on good functions to use.
How about exponential functions, translated so that they go through the origin? E.g., y = ex - 1.
 
thanks, that makes sense.
 
Items 3 and 4 say that the graph goes through the origin and is concave up.
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top