Raphie said:
I guess the next step would be to figure out a formula for 3*T_x + 1 is Triangular to see how it compares to the one for Sophie Germain Triangular Numbers.
Well, that turned out to be not too difficult to track down with a little research...
=========================================
A001571 a(0) = 0, a(1) = 2, a(n) = 4a(n-1) - a(n-2) + 1.
0, 2, 9, 35, 132, 494, 1845, 6887, 25704, 95930, 358017
http://oeis.org/A001571
Second member of the Diophantine pair (m,k) that satisfies 3(m^2+m)=k^2+k: a(n)=k. - Bruce Corrigan, Nov 04 2002
a(n)=-(1/2)-(1/4)*sqrt(3)*[2-sqrt(3)]^n+(1/4)*sqrt(3)*[2+sqrt(3)]^n+(1/4)*[2-sqrt(3)]^n+(1/4) *[2+sqrt(3)]^n, with n>=0 [From Paolo P. Lava, Jul 31 2008]
A133161 Indices of the triangular numbers which are also centered triangular number.
1, 4, 16, 61, 229, 856, 3196, 11929, 44521, 166156
http://oeis.org/A133161
Also, indices of the triangular numbers which are sums of three consecutive triangular numbers (see A129803).
a(n+2)=4*a(n+1)-a(n)+1, a(n+1)=2*a(n)+0.5+0.5*(12*a(n)^2+12*a(n)-15)^0.5.
a(n)=-(1/2)-(1/4)*sqrt(3)*[2-sqrt(3)]^n+(1/4)*sqrt(3)*[2+sqrt(3)]^n+(3/4)*[2-sqrt(3)]^n+(3/4) *[2+sqrt(3)]^n, with n>=0 - Paolo P. Lava, Jul 30 2008
=========================================
(sqrt (8*((3*(0^2 + 0)/2) + 1)+1) - 1)/2 = 1
(sqrt (8*((3*(2^2 + 2)/2) + 1)+1) - 1)/2 = 4
(sqrt (8*((3*(9^2 + 9)/2) + 1)+1) - 1)/2 = 16
(sqrt (8*((3*(35^2 + 35)/2) + 1)+1) - 1)/2 = 61
(sqrt (8*((3*(132^2 + 132)/2) + 1)+1) - 1)/2 = 229
(sqrt (8*((3*(494^2 + 494)/2) + 1)+1) - 1)/2 = 856
(sqrt (8*((3*(1845^2 + 1845)/2) + 1)+1) - 1)/2 = 3196
Sophie Germain Triangular Numbers are associated with Pell Numbers (sqrt 2), and the 3*T_x + 1 form is associated with (sqrt 3).
Note that 16 is a member of A133161, which then seems to diverge away from powers of 4 thereafter.
1, 4, 16, 61, 229, 0856, 3196, 11929...
1, 4, 16, 64, 256, 1024, 4032, 16384...
0, 0, 00, 03, 027, 0168, 0836, 04455... = First Differences (3 = 2^2 - 1 and 168 = 13^2 - 1)
The form: (sqrt (8*((3*(x^2 + x)/2) + 1)+1) - 1)/2 simplifies to:
(sqrt ((12*(x^2 + x)) + 9) - 1)/2
For x = a(n) = 4a(n-1) - a(n-2) + 1
e.g.
4*2 - 0 + 1 = 9
4*9 - 2 + 1 = 35
4*35 - 9 + 1 = 132
The first several triangular numbers for which (T_x - 1)/3 is also triangular are:
1, 10, 136, 1891, 26635, 366796, 5108806, 71156485, 991081981, 13803991246, 19226479546, 2677903145191, 37298379237211, 519499406175760, 7235693307223426, 100780206894952201, 1403687203222107385, 19550840638214551186, 272308081731781609216
Up to 19550840638214551186, and excluding 1 (the sum T_-1 + T_0 + T_1), these values can all be found here:
A129803 Triangular numbers which are the sum of three consecutive triangular numbers.
http://oeis.org/A129803
136, for instance, is the sum of 36 + 45 + 55 = T_8 + T_9 + T_10
Since none of these values is in N...
(sqrt (8*((2*(100780206894952201 - 1)/3) + 1)+1) - 1)/2
(sqrt (8*((2*(1403687203222107385 - 1)/3) + 1)+1) - 1)/2
(sqrt (8*((2*(19550840638214551186 - 1)/3) + 1)+1) - 1)/2
(sqrt (8*((2*(272308081731781609216 - 1)/3) + 1)+1) - 1)/2
... we can now safely state that if there is a counter-example to the proposition:
There is no Triangular Number T_x > 45 | 2*T_x + 1 and 3*T_x + 1 are also triangular
... it would have to be greater than roughly 272 Quintillion.
(sqrt (8*((2*(y - 1)/3) + 1)+1) - 1)/2, by the way, simplifies to...
(sqrt ((16*((y - 1)/3)) + 9) - 1)/2 =
(sqrt ((16*x + 9) - 1)/2
RELATED CONJECTURE
Raphie said:
Limiting ourselves to N...
Conjecture:
(sqrt (16x + 9) - 1)/2 = y | 2y^2 + 2y - 3 = z^2
for x = a Sophie Germain Triangular Number, which is recursively defined as:
a(n)=34a(n-2)-a(n-4)+11
Thus, by substitution:
2*((sqrt (16*45 + 9) - 1)/2)^2 + 2*(sqrt (16*45 + 9) - 1)/2 - 3
2*((sqrt (16*
T_9 + 9) - 1)/2)^2 + 2*(sqrt (16*T_9 + 9) - 1)/2 - 3
2*((sqrt (16*((91 - 1)/2) + 9) - 1)/2)^2 + 2*(sqrt (16*((91 - 1)/2) + 9) - 1)/2 - 3
2*((sqrt (16*((
T_13 - T_1)/2) + 9) - 1)/2)^2 + 2*(sqrt (16*((T_13 - T_1)/2) + 9) - 1)/2 - 3
2*((sqrt (16*((136 - 1)/3) + 9) - 1)/2)^2 + 2*(sqrt (16*((136 - 1)/3) + 9) - 1)/2 - 3
2*((sqrt (16*((
T_16 - T_1)/3) + 9) - 1)/2)^2 + 2*(sqrt (16*((T_16 - T_1)/3) + 9) - 1)/2 - 3
= 8*T_9 + 1
= 2*T_16 + 89; 89 == F_11 == 24-th Prime
= 19^2
= 361
Combine with the only other known solution... T_0 = 0, 2*T_0 + 1 = T_1, 3*T_0 + 1 = T_1...
2*((sqrt (16*
T_0 + 9) - 1)/2)^2 + 2*(sqrt (16*T_0 + 9) - 1)/2 - 3
2*((sqrt (16*((
T_1 - 1)/2) + 9) - 1)/2)^2 + 2*(sqrt (16*((T_1 - 1)/2) + 9) - 1)/2 - 3
2*((sqrt (16*((
T_1 - 1)/3) + 9) - 1)/2)^2 + 2*(sqrt (16*((T_1 - 1)/3) + 9) - 1)/2 - 3
= 8*T_0 + 1
= 2*T_1 - 1; 1 == F_1 or F_2 == "0-th" Prime (first positive integer with less than 3 divisors)
= 1^2
= 1
And the difference between the two, in geometric terms, can be thought of as one full rotation around a circle.