Characteristic equation of binomial random variable

sinned4789
Messages
6
Reaction score
0

Homework Statement


find the characteristic equation of a binomial variable with pmf p(x) =\frac{n!}{(n-k)!k!}*p^{k}*(1-p)^{n-k}

Homework Equations


characteristic equation
I(t) = \sump(x)*e^{tk}

The Attempt at a Solution


I(t) = \sum\frac{n!}{(n-k)!k!}*(p^{k}*(1-p)^{-k}*e^{tk})*(1-p)^{n}

i am stuck on this series because i don't know what to do with the combination term.
 
Physics news on Phys.org
In the definition

E(tX) = \sum_{k-0}^{n}\binom n k e^{tk}p^k(1-p)^{n-k}

group the etk with the pk and then think about what the binomial expansion of (a + b)n looks like.
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top