Eigenvalues of the Frenet formulas and angular velocity

ForMyThunder
Messages
149
Reaction score
0
So there's a circular helix parametrized by \vec x(t)=(a\cos(\alpha t), a\sin(\alpha t), bt) and you have the matrix K given in the Frenet-Serret formulas. In the book I'm reading it says that -\alpha^2 is the nonzero eigenvalue of K^2. Can someone explain how they know this is? I understand that you can compute the eigenvalues of the matrix to verify this but how can you say this without computation?
 
Physics news on Phys.org
ForMyThunder said:
So there's a circular helix parametrized by \vec x(t)=(a\cos(\alpha t), a\sin(\alpha t), bt) and you have the matrix K given in the Frenet-Serret formulas. In the book I'm reading it says that -\alpha^2 is the nonzero eigenvalue of K^2. Can someone explain how they know this is? I understand that you can compute the eigenvalues of the matrix to verify this but how can you say this without computation?

Can you show me why the eigen value is -alpha^2?

I get +-alpha^2/(a.alpha^2 + b^2)
 
Hello! There is a simple line in the textbook. If ##S## is a manifold, an injectively immersed submanifold ##M## of ##S## is embedded if and only if ##M## is locally closed in ##S##. Recall the definition. M is locally closed if for each point ##x\in M## there open ##U\subset S## such that ##M\cap U## is closed in ##U##. Embedding to injective immesion is simple. The opposite direction is hard. Suppose I have ##N## as source manifold and ##f:N\rightarrow S## is the injective...
Back
Top