Integration substitution rule help

p.mather
Messages
19
Reaction score
0

Homework Statement


∫ x^(1/4) . (x^(5/4) +1)^6

Homework Equations



I used substitution rule with u = x^(5/4) +1

The Attempt at a Solution



I got an answer of

4/5 . (u^7/7) +c would that be correct
 
Physics news on Phys.org


Convert u back to x and take the derivative. Is it correct?
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top