Finding determinant given determinant of another matrix

bojo
Messages
5
Reaction score
0

Homework Statement



Let A be a 3 x 3 matrix satisfying the equation A^{2}-3A-2I=0 where I is the 3x3 identity matrix. Find det(A) given the det(A-3)=2

The Attempt at a Solution



Well can't find anything like this in my textbook, notes or google. I imagine its a pretty simple matrix property I've overlooked but otherwise i have no clue what to do!


Help much appreciated,
Ben
 
Physics news on Phys.org
det(AB) =det(A)*det(B)

So if you factor A^2-3A you can use det(A-3) = 2
 
so

A^2 -3A = 2I factors to

A(A-3)=2I

and using property det(AB)=det(A)det(B)

det(A)det(A-3)=det(2I) so det(A)=det(2I)/det(A-3)
 
Yes and you can easily find det(2I).
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top