Finding the equation for Velocity with Drag

  • Thread starter Thread starter Theorγ
  • Start date Start date
  • Tags Tags
    Drag Velocity
AI Thread Summary
The discussion focuses on deriving the equation for the velocity of a ball dropped from a height, considering the effects of gravity and drag. The net force is expressed as F_net = mg - (1/2)pCAv², leading to the differential equation for acceleration. Participants explore integration techniques, including hyperbolic functions, to solve for velocity and position over time. The final equations are confirmed, with emphasis on ensuring the correct inclusion of gravitational factors in the position equation. The consensus is that the equation h = (2m/g)(ln[(e^(2√(pCAg/2m)t) + 1)/(2e^(√(pCAg/2m)t))]) accurately represents the scenario.
Theorγ
Messages
57
Reaction score
0

Homework Statement


Given a situation where a ball of mass m is dropped off at a height of h, find the equation that would give the velocity of the ball with respect to time given that gravity and drag are intrinsic factors.


Homework Equations


F_{g} = m g
F_{D} = \frac{1}{2}pCAv^2


The Attempt at a Solution



F_{net}= F_{g} - F_{D}
F_{net} = m g - \frac{1}{2}pCAv^2
a_{net} = g - \frac{1}{2m}pCAv^2
\frac{dv}{dt} = g - \frac{1}{2m}pCAv^2
\int \frac{1}{g - \frac{1}{2m}pCAv^2} dv = \int dt

Now I'm stuck; what in the world would you do to integrate the left side? I tried relating \int\frac{1}{1 - x^2} dx = \int\frac{-1}{(x-1)(x+1)} dx = \frac{1}{2}ln(x + 1) - \frac{1}{2}ln(x - 1) + C to the left side and that integrates out by factoring and using partial fractions. However, I can't find any way to easily factor, if the left side is even factorable to begin with...

_________________________
\int \frac{1}{(\sqrt{g})^2 - (\sqrt{\frac{1}{2m}pCA}v)^2} dv = t + Constant
\int \frac{1}{(\sqrt{g} + (\sqrt{\frac{1}{2m}pCA}v))(\sqrt{g} - (\sqrt{\frac{1}{2m}pCA}v))} dv = t + Constant
\int \frac{\alpha}{(\sqrt{g} + (\sqrt{\frac{1}{2m}pCA}v))} dv + \int \frac{\beta}{(\sqrt{g} - (\sqrt{\frac{1}{2m}pCA}v))} dv = t + Constant
\int \frac{\frac{1}{2\sqrt{g}}}{(\sqrt{g} + (\sqrt{\frac{1}{2m}pCA}v))} dv + \int \frac{\frac{1}{2\sqrt{g}}}{(\sqrt{g} - (\sqrt{\frac{1}{2m}pCA}v))} dv = t + Constant
u_{1} = \sqrt{g} + \sqrt{\frac{1}{2m}pCA}v
\frac{du_{1}}{dv_{1}} = \sqrt{\frac{1}{2m}pCA}
u_{2} = \sqrt{g} - \sqrt{\frac{1}{2m}pCA}v
\frac{du_{2}}{dv_{2}} = -\sqrt{\frac{1}{2m}pCA}
\int \frac{\frac{1}{2\sqrt{g}}}{u_{1}} \frac{du}{\sqrt{\frac{1}{2m}pCA}} - \int \frac{\frac{1}{2\sqrt{g}}}{u_{2}} \frac{du}{\sqrt{\frac{1}{2m}pCA}} = t + Constant
\frac{\frac{1}{2\sqrt{g}}}{\sqrt{\frac{1}{2m}pCA}} ln(\sqrt{g} + \sqrt{\frac{1}{2m}pCA}v) - \frac{\frac{1}{2\sqrt{g}}}{\sqrt{\frac{1}{2m}pCA}} ln(\sqrt{g} - \sqrt{\frac{1}{2m}pCA}v) = t + Constant
 
Last edited:
Physics news on Phys.org
You're on the right track. :smile:
If you substitute ½pCA/m for e.g. k, you can easily use the identity a2 - b2 = (a-b)(a+b), from which you can integrate with partial fractions.

It's going to get messy, though.
 
So now that I've solved the velocity function, is there a way to integrate to find the position function of time?
 
Well, v = ds/dt, so if you simplify the formula you can integrate it directly.

You're probably going to need to pull out some hyperbolic trigonometry, though.

Although you can do it without hyperbolic trigonometry, too.
 
Well I managed to manipulate and simplify the equation into this, but I haven't learned how to use hyperbolic functions, so what do I do?

a = \frac{\frac{1}{2\sqrt{g}}}{\sqrt{\frac{1}{2m}pCA}}
b = \sqrt{\frac{1}{2m}pCA}
\frac{a}{\sqrt{g}}\frac{ds}{dt} = \frac{e^{bt} - 1}{e^{bt} + 1}
\int\frac{a}{\sqrt{g}} ds= \int\frac{e^{bt} - 1}{e^{bt} + 1} dt

____________
EDIT: Okay so I read up briefly on how hyperbolic functions work and this is what I've come up with:
\int\frac{a}{\sqrt{g}} ds= \int\tanh(\frac{bt}{2}) dt
\frac{a}{\sqrt{g}}s =\frac{2}{b} ln(cosh(\frac{bt}{2})) + Constant
 
Last edited:
Can someone confirm if I manipulated the hyperbolic function correctly and if I integrated correctly?
 
Your integration looks correct. However,
Theorγ said:
\frac{a}{\sqrt{g}}\frac{ds}{dt} = \frac{e^{bt} - 1}{e^{bt} + 1}
there's an error in your simplification. You've forgotten there's an \frac{\frac{1}{2\sqrt{g}}}{\sqrt{\frac{1}{2m}pCA}} before the natural logarithms.

I.e.

\frac{\frac{1}{2\sqrt{g}}}{\sqrt{\frac{1}{2m}pCA}}\times ln\left(\frac{|\sqrt{g}+v\sqrt{\frac{1}{2m}pCA}|}{|\sqrt{g}-v\sqrt{\frac{1}{2m}pCA}|}\right)=t+D
 
Last edited:
So it should be solved like this?:

\frac{\frac{1}{2\sqrt{g}}}{\sqrt{\frac{1}{2m}pCA}} \times ln\left(\frac{|\sqrt{g}+v\sqrt{\frac{1}{2m}pCA}|}{ |\sqrt{g}-v\sqrt{\frac{1}{2m}pCA}|}\right)=t+D

Because the object is at rest at time 0, then D is:
_____________________________________________________________
\frac{\frac{1}{2\sqrt{g}}}{\sqrt{\frac{1}{2m}pCA}} \times ln\left(\frac{|\sqrt{g}+0\sqrt{\frac{1}{2m}pCA}|}{ |\sqrt{g}-0\sqrt{\frac{1}{2m}pCA}|}\right) = 0+D
\frac{\frac{1}{2\sqrt{g}}}{\sqrt{\frac{1}{2m}pCA}} \times ln\left(\frac{|\sqrt{g}|}{ |\sqrt{g}|}\right) = D
\frac{\frac{1}{2\sqrt{g}}}{\sqrt{\frac{1}{2m}pCA}} \times ln (1) = D = 0
_____________________________________________________________
Using these variables as the following expressions:
\alpha = \frac{1}{2\sqrt{g}}
\beta = \sqrt{\frac{1}{2m}pCA}
_____________________________________________________________
The substitution:
\frac{\frac{1}{2\sqrt{g}}}{\sqrt{\frac{1}{2m}pCA}} \times ln\left(\frac{|\sqrt{g}+v\sqrt{\frac{1}{2m}pCA}|}{ |\sqrt{g}-v\sqrt{\frac{1}{2m}pCA}|}\right)=t
\frac{\alpha}{\beta} \times ln\left(\frac{|\sqrt{g}+v\beta|}{ |\sqrt{g}-v\beta|}\right)=t
ln\left(\frac{|\sqrt{g}+v\beta|}{ |\sqrt{g}-v\beta|}\right)=\frac{\beta}{\alpha}t
e^{ln\left(\frac{|\sqrt{g}+v\beta|}{ |\sqrt{g}-v\beta|}\right)}=e^{\frac{\beta}{\alpha}t}
\frac{\sqrt{g}+v\beta}{\sqrt{g}-v\beta}=e^{\frac{\beta}{\alpha}t}
 
  • #10
Continued from above:
\sqrt{g}+v\beta=e^{\frac{\beta}{\alpha}t} \times (\sqrt{g}-v\beta)
\sqrt{g}+v\beta=e^{\frac{\beta}{\alpha}t}\sqrt{g}-e^{\frac{\beta}{\alpha}t}v\beta
e^{\frac{\beta}{\alpha}t}v\beta+v\beta=e^{\frac{ \beta }{\alpha}t} \sqrt{g}-\sqrt{g}
v\beta \times (e^{\frac{\beta}{\alpha}t}+1)=\sqrt{g} \times (e^{\frac{\beta}{\alpha}t}-1)
\frac{\beta}{\sqrt{g}}v=\frac{(e^{\frac{\beta}{ \alpha }t}-1)}{(e^{\frac{\beta}{\alpha}t}+1)}
\frac{\beta}{\sqrt{g}}\frac{dx}{dt}=\frac{(e^{ \frac {\beta}{\alpha}t}-1)}{(e^{\frac{\beta}{\alpha}t}+1)}
\int\frac{\beta}{\sqrt{g}}dx=\int\frac{(e^{\frac{ \beta }{ \alpha }t}-1)}{(e^{\frac{\beta}{\alpha}t}+1)}dt
____________________________________________
Hyperbolic Substitution:
\frac{e^{2t}-1}{e^{2t}+1}=tanh(t)
\frac{e^{\frac{ \beta }{ \alpha }t}-1}{e^{\frac{\beta}{\alpha}t}+1}=tanh(\frac{\beta}{2\alpha}t)
\int\frac{\beta}{\sqrt{g}}dx=\int\tanh(\frac{\beta}{2\alpha}t)dt
\frac{\beta}{\sqrt{g}}x=\frac{2 \alpha }{\beta} \times ln|cosh(\frac{\beta}{2 \alpha }t)| + C
cosh(t)=\frac{e^{2t}+1}{2e^t}
cosh(\frac{\beta}{2 \alpha }t)=\frac{e^{\frac{\beta}{ \alpha }t}+1}{2e^{\frac{\beta}{2 \alpha }t}}
\frac{\beta}{\sqrt{g}}x=\frac{2 \alpha }{\beta} \times ln|\frac{e^{\frac{\beta}{ \alpha }t}+1}{2e^{\frac{\beta}{2 \alpha }t}}| + C
 
Last edited:
  • #11
Looks fine to me. :smile:
 
  • #12
Because the object is at rest at time 0, then the object has moved a distance of 0:
\frac{\beta}{\sqrt{g}}x=\frac{2 \alpha }{\beta} \times ln|\frac{e^{\frac{\beta}{ \alpha }t}+1}{2e^{\frac{\beta}{2 \alpha }t}}| + C
\frac{\beta}{\sqrt{g}}0=\frac{2 \alpha }{\beta} \times ln|\frac{e^{\frac{\beta}{ \alpha }0}+1}{2e^{\frac{\beta}{2 \alpha }0}}| + C
0=\frac{2 \alpha }{\beta} \times ln|\frac{2}{2}| + C
0=0 + C
C = 0
______________________________________________________
Completing the equation:
\frac{\beta}{\sqrt{g}}x=\frac{2 \alpha }{\beta} \times ln|\frac{e^{\frac{\beta}{ \alpha }t}+1}{2e^{\frac{\beta}{2 \alpha }t}}|
x=\frac{2 \alpha \sqrt{g}}{\beta^2} \times ln|\frac{e^{\frac{\beta}{ \alpha }t}+1}{2e^{\frac{\beta}{2 \alpha }t}}|
____________________________________
Previous Variable Denotation:
\alpha = \frac{1}{2\sqrt{g}}
\beta = \sqrt{\frac{1}{2m}pCA}
____________________________________
Simplification:
x=\frac{2 \alpha \sqrt{g}}{\beta^2} \times ln|\frac{e^{\frac{\beta}{ \alpha }t}+1}{2e^{\frac{\beta}{2 \alpha }t}}|
x=\frac{2 \frac{1}{2\sqrt{g}} \sqrt{g}}{\sqrt{\frac{1}{2m}pCA}^2} \times ln|\frac{e^{\frac{\sqrt{\frac{1}{2m}pCA}}{ \frac{1}{2\sqrt{g}} }t}+1}{2e^{\frac{ \sqrt{\frac{1}{2m}pCA}}{2 \frac{1}{2\sqrt{g}} }t}}|
x=\frac{2m}{pCA} \times ln|\frac{e^{2 \sqrt{\frac{pCAg}{2m}}t}+1}{2e^{\sqrt{\frac{pCAg}{2m}}t}}|
____________________________________
Okay so can someone confirm the validity of my steps now, and confirm whether the below equation represents an object with mass m, dropped at a height of h, with respect to time t, given that gravity and drag are the only forces acting on it:

h=\frac{2m}{pCA} \times ln|\frac{e^{2 \sqrt{\frac{pCAg}{2m}}t}+1}{2e^{\sqrt{\frac{pCAg}{2m}}t}}|
 
Last edited:
  • #13
I redid the problem on paper this time and I got a slightly different answer:

h=\frac{2mg}{pCA} \times ln|\frac{e^{2 \sqrt{\frac{pCAg}{2m}}t}+1}{2e^{\sqrt{\frac{pCAg}{ 2m}}t}}|

Compared to my original one from the above post:

h=\frac{2m}{pCA} \times ln|\frac{e^{2 \sqrt{\frac{pCAg}{2m}}t}+1}{2e^{\sqrt{\frac{pCAg}{ 2m}}t}}|

Can anyone confirm which one is right? My new one contains an extra g, but my other one doesn't...
 
  • #14
Theorγ said:
h=\frac{2m}{pCA} \times ln|\frac{e^{2 \sqrt{\frac{pCAg}{2m}}t}+1}{2e^{\sqrt{\frac{pCAg}{ 2m}}t}}|
It's this one. If you check the units, you get meter.
 
Back
Top