Whether the base field is algebraically closed doesn't matter here, since two matrices are similar over a small field if and only if they are similar over a bigger field. So the question can always be reduced to an algebraically closed field.
That said, it can be shown that two matrices are similar if and only if the Jordan normal form has the same "invariant factors" and it can be shown that a matrix and it's transpose have the same invariant factors. So a matrix is similar to it's transpose.
Check out the book "matrix analysis" by Horn and Johnson.
#5
arthurhenry
42
0
I thank you Micromass, that source was very helpful.
Hello !
I derived equations of stress tensor 2D transformation.
Some details: I have plane ABCD in two cases (see top on the pic) and I know tensor components for case 1 only. Only plane ABCD rotate in two cases (top of the picture) but not coordinate system. Coordinate system rotates only on the bottom of picture.
I want to obtain expression that connects tensor for case 1 and tensor for case 2.
My attempt:
Are these equations correct? Is there more easier expression for stress tensor...
Are there known conditions under which a Markov Chain is also a Martingale? I know only that the only Random Walk that is a Martingale is the symmetric one, i.e., p= 1-p =1/2.