Cauchy sequences and continuity versus uniform continuity

renjean
Messages
7
Reaction score
0

Homework Statement



This isn't really a problem but it is just something I am curious about, I found a theorem stating that you have two metric spaces and f:X --> Y is uniform continuous and (xn) is a cauchy sequence in X then f(xn) is a cauchy sequence in Y.

Homework Equations



This proposition is for uniform continuity but I am wondering if it also holds true for just regular continuity.
 
Physics news on Phys.org
Think about f(x)=1/x
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top