Continuous Surface Charge Source - Integral Confusion

technicolour1
Messages
7
Reaction score
0
1. Homework Statement
Find the total charge on a circular disc of radius ρ = a if the charge density is given by
ρs = ρs0 (e^−ρ) sin2 φ C/m2 where ρs0 is a constant.
Are the two limits of integration from 0 -> a for ρ and 0->2∏ for φ? In the example given in the notes, ρ varies, instead of being a constant value. Does this mean that I cannot integrate ρ in this problem?


2. Homework Equations

Q = ∫ρdS

3. The Attempt at a Solution

Q = ∫∫ρs0 (e^−ρ) sin^2 (φ) dφdρ...
 
Physics news on Phys.org
technicolour1 said:
1. Homework Statement
Find the total charge on a circular disc of radius ρ = a if the charge density is given by
ρs = ρs0 (e^−ρ) sin2 φ C/m2 where ρs0 is a constant.
Are the two limits of integration from 0 -> a for ρ and 0->2∏ for φ? In the example given in the notes, ρ varies, instead of being a constant value. Does this mean that I cannot integrate ρ in this problem?

2. Homework Equations

Q = ∫ρdS   (This is the surface density ρ.)

3. The Attempt at a Solution

Q = ∫∫ρs0 (e^−ρ) sin^2 (φ) dφdρ...
You have the Greek letter rho, ρ, used in two very different ways here.

ρ as a coordinate: This is the role usually player by the letter, r, in polar coordinates.

ρ as (surface) charge density: Here ρ seems to be accompanied by what looks like should be a subscript. ρs and ρs0.

Yes, the limits of integration are as you indicate.

The charge density, ρs, is a function of the coordinate, ρ. (somewhat confusing).

For polar coordinates, the element (differential) for area, dS, is given by: \displaystyle dS=\rho\,d\varphi\,d\rho\,.

Other than that, you seem to be on the right track.
 
##|\Psi|^2=\frac{1}{\sqrt{\pi b^2}}\exp(\frac{-(x-x_0)^2}{b^2}).## ##\braket{x}=\frac{1}{\sqrt{\pi b^2}}\int_{-\infty}^{\infty}dx\,x\exp(-\frac{(x-x_0)^2}{b^2}).## ##y=x-x_0 \quad x=y+x_0 \quad dy=dx.## The boundaries remain infinite, I believe. ##\frac{1}{\sqrt{\pi b^2}}\int_{-\infty}^{\infty}dy(y+x_0)\exp(\frac{-y^2}{b^2}).## ##\frac{2}{\sqrt{\pi b^2}}\int_0^{\infty}dy\,y\exp(\frac{-y^2}{b^2})+\frac{2x_0}{\sqrt{\pi b^2}}\int_0^{\infty}dy\,\exp(-\frac{y^2}{b^2}).## I then resolved the two...
Hello everyone, I’m considering a point charge q that oscillates harmonically about the origin along the z-axis, e.g. $$z_{q}(t)= A\sin(wt)$$ In a strongly simplified / quasi-instantaneous approximation I ignore retardation and take the electric field at the position ##r=(x,y,z)## simply to be the “Coulomb field at the charge’s instantaneous position”: $$E(r,t)=\frac{q}{4\pi\varepsilon_{0}}\frac{r-r_{q}(t)}{||r-r_{q}(t)||^{3}}$$ with $$r_{q}(t)=(0,0,z_{q}(t))$$ (I’m aware this isn’t...
Hi, I had an exam and I completely messed up a problem. Especially one part which was necessary for the rest of the problem. Basically, I have a wormhole metric: $$(ds)^2 = -(dt)^2 + (dr)^2 + (r^2 + b^2)( (d\theta)^2 + sin^2 \theta (d\phi)^2 )$$ Where ##b=1## with an orbit only in the equatorial plane. We also know from the question that the orbit must satisfy this relationship: $$\varepsilon = \frac{1}{2} (\frac{dr}{d\tau})^2 + V_{eff}(r)$$ Ultimately, I was tasked to find the initial...
Back
Top