Acceleration doesn't cause the Twin Paradox?

starfish99
Messages
28
Reaction score
0
Acceleration doesn't "cause" the Twin Paradox?

In a recent review of a physics textbook, the reviewer is critical of the author of the book because the the author doesn't correct the persistent notion of many students that it is the acceleration of one of the twins that "causes"[reviewer's quotes] the differential aging in the twin paradox.

Suppose we have a set of twins, Eartha and Stella. Stella accelerates in a ship to nearly the speed of light and lands on a planet 30 light years away. Immediately upon landing,Stella sends a picture of herself to Eartha, the stay-at-home twin. What would Eartha say upon receiving the image of her twin? Eartha would say that her sister looks exactly like the day she left!

All Stella did was accelerate to near the speed of light.There was no meet-up back on earth. There wasn't even a turn around or any change in direction. Just acceleration and deceleration

My Question: Why is this persistent notion in error?
If acceleration didn't cause the differential aging, what did?
(Please no General Relativity)
 
Physics news on Phys.org


There's a few sources which just say "well one of the twins accelerated, so use GR for this". That's maybe what the reviewer was criticizing? In effect, it is the acceleration that breaks the symmetry of the problem and allows a non-ambiguous result to be reached. But one certainly does not need GR to analyze the twin paradox. Whichever twin switched reference frames will be the one who turns out to be older.
 


Matterwave said:
Whichever twin switched reference frames will be the one who turns out to be older.
You mean younger?
 


Right, younger. >.>

I wrote that without thinking. <.<
 


Indeed acceleration is sufficient but not necessary - you need a way to break the symmetry, and acceleration is one way to do so. Consider the case where the the universe is compact and thus finite, say a torus, that allows its observers to travel in one direction and then arrives back where he started. See here for more details. This gives rise to the so-called "cosmological twin paradox", see this thread and this thread for detailed discussion. I just quote the scenario for clarity here:


Garth said:
Take two twins, one twin stays put and the other is accelerated to
9.999…%c she passes her sister and they synchronise clocks. She continues at constant velocity along a geodesic path and circumnavigates the universe. She eventually meets up with her sister again.

She has aged only 50 years in this near light-speed voyage. However her sister has aged 10 billion years!

Or is it the other way round? How do you tell?
 


starfish99 said:
In a recent review of a physics textbook, the reviewer is critical of the author of the book because the the author doesn't correct the persistent notion of many students that it is the acceleration of one of the twins that "causes"[reviewer's quotes] the differential aging in the twin paradox.

Suppose we have a set of twins, Eartha and Stella. Stella accelerates in a ship to nearly the speed of light and lands on a planet 30 light years away. Immediately upon landing,Stella sends a picture of herself to Eartha, the stay-at-home twin. What would Eartha say upon receiving the image of her twin? Eartha would say that her sister looks exactly like the day she left!

All Stella did was accelerate to near the speed of light.There was no meet-up back on earth. There wasn't even a turn around or any change in direction. Just acceleration and deceleration

My Question: Why is this persistent notion in error?
If acceleration didn't cause the differential aging, what did?
(Please no General Relativity)

Note that you have two accelerations in your scenario: to reach near c, and to land on a planet. They are not essential to your interesting question (in fact they refute it if the goal is to show inessentiality of acceleration).

Let's suppose stella passes right by a space station near earth, and stella and eartha look at each other, seeing they are about the same age (and they syncrhonize wristwatches). Then suppose stella sends eartha a self image as stella passes the distant planet. Further, let's suppose eartha sends stella a self image from a time such that it happens to reach stella at a time after stella passes the planet that is very slightly less than the time it took (per stella) to reach the planet. This means, stella would conclude eartha sent her image 'at the same time' per stella, that stella passed the planet. Eartha, meanwhile, by direct (delayed) communication with the planet verifies stella's image was sent when stella passed the planet.

What do they see? Eartha sees a picture of stella that has aged only a month (for example), though sent after 30 years (per Eartha), and arriving after 60 years per Eartha. Stella gets a picture of Eartha after (for example) two months (planet passed after one month, per stella). But Eartha's picture (say, based on wristwatch in image) has aged less than an hour since stella left eartha! (It would be a good exercise for you to work out why this is so).

Thus there is symmetrical time dilation, and no paradox, when all motion is inertial. Acceleration of at least one twin is necessary for a twin paradox in SR. Further, they have to get back together to have a mutually agreed on age difference. As to what part of difference in path through spacetime is responsible for the age difference, I hold that is a completely meaningless question. In that sense (only) I would say you can't say acceleration caused the age difference, but you can say it enabled it.
 


yenchin said:
Indeed acceleration is sufficient but not necessary - you need a way to break the symmetry, and acceleration is one way to do so. Consider the case where the the universe is compact and thus finite, say a torus, that allows its observers to travel in one direction and then arrives back where he started. See here for more details. This gives rise to the so-called "cosmological twin paradox", see this thread and this thread for detailed discussion. I just quote the scenario for clarity here:

Actually, what this cute example shows is that (if you allow flat but topologically nontrivial spacetime), acceleration is neither necessary nor sufficient. It is not sufficient, because if you symmetric acceleration, there is no differential aging (each accelerates away and back, with identical thrust profile). It is not necessary due to (and only due to) nontrivial topology.
 
from an earlier post of mine
(https://www.physicsforums.com/showthread.php?p=3272665#post3272665)
"First, is it reasonable to say that
it is during his acceleration at C
that twin 2 suddenly loses time or age, and that
this loss at C causes the final age difference at B?
The answer is "no."
It is just as unreasonable to blame the acceleration at C
for the total age difference of the twins
as it would be,
in the case of a triangle ACB in the ordinary Euclidean plane,
to say that the larger length of the path ACB,
as compared to the straight path AB,
is caused by a sudden gain of length at the corner C."

The Clock Paradox in Relativity Theory
Alfred Schild,
The American Mathematical Monthly, Vol. 66, No. 1 (Jan., 1959) (pp. 1-18)
http://www.jstor.org/pss/2309916
 


PAllen said:
Actually, what this cute example shows is that (if you allow flat but topologically nontrivial spacetime), acceleration is neither necessary nor sufficient. It is not sufficient, because if you symmetric acceleration, there is no differential aging (each accelerates away and back, with identical thrust profile). It is not necessary due to (and only due to) nontrivial topology.

Yes. You are right. I should have been more careful :-p
 
  • #10
What about the claim by Dr. Mendel Sachs that the twin paradox is itself not a valid interpretation?

http://mendelsachs.com/on-the-twin-clock-paradox/

I should note that a post asking for clarification on how, given two paths relative to a given inertial frame, the integral of time along the path integral does not correspond to aging was deleted. I asserted that the path with the most acceleration relative to that frame should age more.

I guess Mendel Sachs did not like my definition of aging as a biological measure of the rate of time, and thus subject to SR.
 
  • #11
utesfan100 said:
What about the claim by Dr. Mendel Sachs that the twin paradox is itself not a valid interpretation?

http://mendelsachs.com/on-the-twin-clock-paradox/

I should note that a post asking for clarification on how, given two paths relative to a given inertial frame, the integral of time along the path integral does not correspond to aging was deleted. I asserted that the path with the most acceleration relative to that frame should age more.

I guess Mendel Sachs did not like my definition of aging as a biological measure of the rate of time, and thus subject to SR.

I was actually in college when Sachs first proposed his thesis on the twin paradox (circa 1971). It caused a lot discussion and snickers.

Sachs is/was a serious scientist, but on this, his position is crank, and in decades of writing has not swayed any to his side.

The integral of proper time along world line (with any amount or lack of proper acceleration) is, by definition, the time experience by any physical process following that world line. In both SR and GR, this a definition leading to predictions. Any observation counter to this would be disproof of relativity. There are no such observations, so far as I know.
 
  • #12
PAllen said:
I was actually in college when Sachs first proposed his thesis on the twin paradox (circa 1971). It caused a lot discussion and snickers.

Sachs is/was a serious scientist, but on this, his position is crank, and in decades of writing has not swayed any to his side.

The integral of proper time along world line (with any amount or lack of proper acceleration) is, by definition, the time experience by any physical process following that world line. In both SR and GR, this a definition leading to predictions. Any observation counter to this would be disproof of relativity. There are no such observations, so far as I know.

Thank you for confirming my thoughts. This appears to make his sites a haven for SR doubters. It seems the flaw in logic is outlined by TataKai in the following forum post.

http://mendelsachs.com/cgi-bin/forum/Blah.pl?b-MSFORUM4/m-1155004653/

Here it is argued that Einsteins postulates are inconsistent, thus SR is in error. It would seem to me that these postulates are not well defined, leaving the status of SR inconclusive based on the invalid arguments deriving from these postulates.

Unfortunately, it appears to me that those who refute SR based on this line of argument fail to observe that SR can also be derived based on the following, clearly consistent, postulates:

1) An inertial reference frame is Euclidean.
2) Any trajectory moving with a constant velocity in any reference frame defines the origin of another reference frame.
3) The transformations between frames form a mathematical group.

This then limits the form of the transformation to a single undetermined parameter, 1/c^2, that has been determined to be a precise constant using many methods beyond the optical methods implied by Einsteins postulates. In fact, this can be used to clarify what is intended by Einstein's postulates as theorems.

Electromagnetic/optical phenomenon were the first system where we reached an accuracy able to distinguish this value from 0, and refute the Galilean transformations.

Returning to the twin problem in SR, this derivation would require us to first fix a reference frame. Further, the twins trajectories must have identical initial and final coordinates for a comparison to be meaningful. Each twin will have their age reduced based on how much time dilation is observed in the given frame along the trajectory they followed.

This delta in age must be Lorentz invariant. Otherwise the theory WOULD be inconsistent.
 
  • #13


Hello starfish99:
The Twin Paradox outcome is not dependent on having an acceleration phase. An age difference can also be demonstrated by other means of symmetry breakage.

Let’s say that observers A and B are separated and are approaching each other on a collision course with constant relative velocity. Observer A takes the initiative of synchronizing their clocks as follows. When A’s clock reads T1 he sends a signal (at light speed) to B. B’s receipt of that signal resets his clock to zero and immediately sends a return signal to A, who receives it at his time T2. With the assumption that both light signals traveled at the same speed, A concludes that from his point of view, B reset his clock to zero when A’s clock was at (T1+T2)/2, the midpoint of the T1-to-T2 interval. That being so, A resets his clock at T2 to the time (T2-T1)/2. As far as A is concerned the two clocks have been synchronized.

Nevertheless, when A and B finally collide (or, hopefully, pass one another) they compare clocks and find that A’s clock has advanced more than B’s clock (of course by an amount predicted by SR for their relative velocity.)

As you might expect, if B initiates the synchronization process, the aging outcome would be inverted. And all this without any acceleration.

It does no good to ask why time behaves this way. Such questioning falls in the same category as “Why are there only three spatial dimensions?” (if indeed that’s all there are.)

The current answer to such questions can only be: “That’s the structure of spacetime.”
 
  • #14


Eli Botkin said:
Let’s say that observers A and B are separated and are approaching each other on a collision course with constant relative velocity. Observer A takes the initiative of synchronizing their clocks as follows. When A’s clock reads T1 he sends a signal (at light speed) to B. B’s receipt of that signal resets his clock to zero and immediately sends a return signal to A, who receives it at his time T2. With the assumption that both light signals traveled at the same speed, A concludes that from his point of view, B reset his clock to zero when A’s clock was at (T1+T2)/2, the midpoint of the T1-to-T2 interval. That being so, A resets his clock at T2 to the time (T2-T1)/2. As far as A is concerned the two clocks have been synchronized.
Clocks that are moving with respect to one another cannot be synchronized since they tick at different rates. They can only be reset to the same time when they are colocated. By the time A responds to the signal from B, B's clock will no longer be at the same time. I don't know what you think this accomplishes.
 
  • #15


George:
Yes, clocks in motion relative to each other will not remain synchronized. That’s the gist of SR. That’s what accounts for the age difference, both in my example and in the standard twin paradox problem. Both have the same result for this same reason.

In one case (the standard twin paradox problem) they momentarily synchronize their clocks and mutually agree that they had done so because they were together at the synch moment. In my example only A can claim the synch moment , and only by inference.

For A to conclude that B’s clock read zero when A’s own clock read (T1+T2)/2 is most reasonable. And for A to reset his clock to (T2-T1)/2, so that it would have read zero at what he considered to be a simultaneous event with B’s clock-zero, gives him an easy way to compare elapsed times when they meet. In either case A’s synch moment is fleeting, and serves only to make it easier to compare the clocks’ elapsed times between events.

The “mechanism” that brings about the aging difference is the same in both the standard twin problem and the one I showed here.
My purpose was only to put to rest the idea that acceleration is a necessary ingredient.
 
  • #16


PAllen said:
I was actually in college when Sachs first proposed his thesis on the twin paradox (circa 1971). It caused a lot discussion and snickers.

Sachs is/was a serious scientist, but on this, his position is crank, and in decades of writing has not swayed any to his side.

The integral of proper time along world line (with any amount or lack of proper acceleration) is, by definition, the time experience by any physical process following that world line. In both SR and GR, this a definition leading to predictions. Any observation counter to this would be disproof of relativity. There are no such observations, so far as I know.

Actually, we could have wrapped up the discussion with PAllen's post, because it tells the story in a nutshell. I'll just go ahead and add the space-time diagram for what PAllen has just said (but leaving out acceleration details). I've included a couple of hyperbolic calibration curves to help keep track of the proper times for the twins. The traveling twin takes 10 years going out and 10 years returning, while the stay-at-home twin sits there and ages 40 years.

I think the reviewer of the textbook referred to in post #1 was frustrated because he felt that it is the path taken through space-time that should be the point of focus when talking about the twin paradox.
TwinParadox5.jpg
 
  • #17


I have a question.

Why are there no textbooks that actually DO the Lorentz Transformation?

Why do we never actually take the event-mapping one-to-one, and see what the space-time diagram looks like from the traveling twin's point of view on the OUTBOUND trip?

Why do we never actually take the event-mapping one-to-one, and see what the space-time diagram looks like on the RETURN trip?

Is there some kind of conspiracy, or is it just considered "wrong" to do it, for some reason?
 
  • #18


JDoolin said:
I have a question.

Why are there no textbooks that actually DO the Lorentz Transformation?

Why do we never actually take the event-mapping one-to-one, and see what the space-time diagram looks like from the traveling twin's point of view on the OUTBOUND trip?

Why do we never actually take the event-mapping one-to-one, and see what the space-time diagram looks like on the RETURN trip?

Is there some kind of conspiracy, or is it just considered "wrong" to do it, for some reason?

Is this what you are looking for? Or did you want to see space-time diagrams for the traveling twin's rest system?
TwinParadox_L4.jpg
 
  • #19


JDoolin said:
I have a question.

Why are there no textbooks that actually DO the Lorentz Transformation?

Why do we never actually take the event-mapping one-to-one, and see what the space-time diagram looks like from the traveling twin's point of view on the OUTBOUND trip?

Why do we never actually take the event-mapping one-to-one, and see what the space-time diagram looks like on the RETURN trip?

Is there some kind of conspiracy, or is it just considered "wrong" to do it, for some reason?
Since you can analyze any scenario from any Frame of Reference, why bother with doing a Lorentz Transformation?

The Twin Paradox is so easy to analyze from a frame in which the one twin remains at rest. You just apply Einstein's super simple time dilation formula for a moving clock, τ=t√(1-β2), you plug in the speed, β, as a fraction of the speed of light that the traveler goes at and the time, t, in the rest frame that he is gone and you get his age, τ, when he returns. So if he's traveling at 0.8c and he's gone for 10 years (5 years out and 5 years back), he'll be only 6 years older when he gets back compared to the 10 years of his brother:

τ=t√(1-β2)=10√(1-0.82)=10√(1-0.64)=10√(0.36)=10(0.6)=6

Now if you want to use the Lorentz transformation to analyze this from a frame in which the traveling twin is at rest during the outbound portion of the trip, you will have to first assign events to the first frame. I prefer to only include t and x in the form [t,x] and use units of t in years and x in light-years.

So we start with both twins at the origin of our frame, [0,0].

Next we calculate where the traveling twin will be after 5 years at 0.8c which is 4 light-years away, [5,4].

Meanwhile the other twin is at [5,0].

Then 5 years later, both twins are reunited at [10,0].

To do any Lorentz Transforms, we start by calculating gamma for beta of 0.8:

γ=1/√(1-β2)=1/√(1-0.82)=1/√(1-0.64)=1/√(0.36)=1/0.6=1.667

Now it's fairly easy to transform the first two events into the rest frame of the traveler using the simplified Lorentz Transform. In fact, the first one is the origin which is also the origin of any other frame. But the second event for the traveler is:

t'=γ(t-xβ)=1.667(5-4*0.8)=1.667(5-3.2)=1.667(1.8)=3 years

x'=γ(x-tβ)=1.667(4-5*0.8)=1.667(4-4)=1.667(0)=0 light-years

But the event for the stay-at-home twin is:

t'=γ(t-xβ)=1.667(5-0*0.8)=1.667(5-0)=1.667(5)=8.333 years

x'=γ(x-tβ)=1.667(0-5*0.8)=1.667(0-4)=1.667(-4)=-6.667 light-years

Now the event for the traveler looks good because since he is at rest in this frame, his position remains at 0 and his time is 3 years, half of the accumulated age that we calculated earlier (since he is half-way through his 6 year trip, according to him).

But what about the event for the stay-at-home twin? Those numbers don't make any sense at all, do they? But they do if we remember that these are coordinates in a different frame. If we want to know how much the stay-at-home twin aged up to this point, we have to use the time dilation formula on the coordinate time to get his proper time which is 8.333 times 0.6 which is 5 years.

Now we want to bring the twins back together using the last of the events:

t'=γ(t-xβ)=1.667(10-0*0.8)=1.667(10-0)=1.667(10)=16.667 years

x'=γ(x-tβ)=1.667(0-10*0.8)=1.667(0-8)=1.667(-8)=-13.333 light-years

Again, the stay-at-home twin has a coordinate time of 16.667 years but if we multiply this by 0.6 we get 10 years.

The traveling twin is a little more complicated because we don't know off hand what his speed is but it's not too hard to calculate if we just take the difference in the last two events for him, [16.667,-13.333] and [3,0] which is [13.667,-13.333]. This means he has traveled 13.333 light-years in 13.667 years for a speed of 0.9756c. Plugging this into the time dilation formula, we get an accumulated age of:

τ=13.667√(1-0.97562)=13.667√(1-0.9518)=13.667√(0.0482)=13.667(0.2195)=3 years

Wasn't that fun?
 
  • #20


ghwellsjr said:
Wasn't that fun?

Hi ghwellsjr.

Yes, that was fun. I like your problem set-up. We have three major events
e1: departure (x,t)=(0,0)
e2: turnaround (x,t)=(4,5)
e3: return (x,t)=(0,10)

You also have defined another event (x,t)=(0,5), for which (x',t')= (-6.667,8.333). Then you said: "Those numbers don't make any sense at all, do they? But they do if we remember that these are coordinates in a different frame." I totally agree; but there's a lot more to say about that. Why doesn't it make sense. Why does it make sense? How does it make sense? How long is the outbound twin's reference frame relevant to the outbound twin? For only three years. But this event happens at t=8.333 years! How far away is it going to happen? 6.667 light-years from the origin.

We should also figure out when and where this event happens according to the inbound twin's reference frame.

Here is my calculation of the coordinates of e1, e2, and e3 in the outbound and inbound frames:

attachment.php?attachmentid=43371&d=1328105729.png


e1': departure (x,t)=(0,0)
e2': turnaround (x,t)=(0,3)
e3': return (x,t)=(-13.333, 16.667)

We can calculate the necessary change in velocity by figuring Δx/Δt between event 2 and event 3.

attachment.php?attachmentid=43372&d=1328105729.png


And in the return-frame, we have
e1'': departure (x,t)=(-13.333,-10.667)
e2'': turnaround (x,t)=(0,3)
e3'': return (x,t)=(0,6)

My point is, those numbers DO make sense if you show the space-time diagram in the other frames. However, none of the textbooks on relativity actually SHOW the space-time diagrams in the other frames, so the reader is always left with these loose ends, wondering if it really makes sense, or just accepting the authority of the author, who claims it makes sense.

I know it does make sense, but that's because I've gone through the effort of actually looking at it from the different frames. But I've never seen ANY relativity texts actually go through the effort of transforming the coordinates of the events to other reference frames, and showing how those coordinates DO make sense.

When an author says "it doesn't make sense" does he mean
  • "it doesn't make sense to me," or
  • "it doesn't make sense to most people" or
  • "it really makes no sense, i.e. it is really wrong"
  • It makes no sense, i.e. it is meaningless;
  • "it does not make sense to our primitive human brains, but it is mathematically correct."
  • other?
 

Attachments

  • TwinParadoxCalculation1.png
    TwinParadoxCalculation1.png
    8.5 KB · Views: 1,006
  • TwinParadoxCalculation2.png
    TwinParadoxCalculation2.png
    11 KB · Views: 1,029
Last edited:
  • #21


So which event coordinates "do make sense," and which ones "don't make sense?"

In the Earth frame:
e1: departure (x,t)=(0,0)
e2: turnaround (x,t)=(4,5)
e3: return (x,t)=(0,10)

In the outbound frame
e1': departure (x,t)=(0,0)
e2': turnaround (x,t)=(0,3)
e3': return (x,t)=(-13.333, 16.667)

In the return frame
e1'': departure (x,t)=(-13.333,-10.667)
e2'': turnaround (x,t)=(0,3)
e3'': return (x,t)=(0,6)

It appears that everyone agrees that events e1, e2, e3 all make sense, e1' and e2' both make sense, and e2'' and e3'' both make sense.

However, the coordinates of the two remaining events seem to be in question:
e3': return (x,t)=(-13.333, 16.667)
e1'': departure (x,t)=(-13.333,-10.667)

What is the opinion of the General Relativity Experts? Do the coordinates of those events "make sense" or "not make sense?"
 
  • #22


JDoolin said:
Hi ghwellsjr.

Yes, that was fun. I like your problem set-up. We have three major events
e1: departure (x,t)=(0,0)
e2: turnaround (x,t)=(4,5)
e3: return (x,t)=(0,10)

You also have defined another event (x,t)=(0,5), for which (x',t')= (-6.667,8.333). Then you said: "Those numbers don't make any sense at all, do they? But they do if we remember that these are coordinates in a different frame." I totally agree; but there's a lot more to say about that. Why doesn't it make sense. Why does it make sense? How does it make sense?
You asked the question:
JDoolin said:
Why are there no textbooks that actually DO the Lorentz Transformation?
I'm trying to provide an answer. Part of that answer is that when you transform some significant events in one frame to another frame, they are no longer significant. The event in question is the one for the stay-at-home twin that is simultaneous with the turn-around event for the traveler. When we transform these two events into the frame in which the traveler is at rest during the outbound portion of the trip, they are no longer simultaneous and therefore don't represent anything significant to the traveler. But they do represent something significant to us once we remember, as I previously said, that they are coordinates in a different frame. I showed how we can use the time dilation formula to convert the coordinate time to the proper time and get back the age difference of the home twin. What we are really doing is dividing the coordinate time, 8.333, by gamma, 1.667, to get the proper time of 5 years and we could also divide the coordinate distance, -6.667 by 1.667 to get the proper distance, -4 light-years.
JDoolin said:
How long is the outbound twin's reference frame relevant to the outbound twin? For only three years. But this event happens at t=8.333 years! How far away is it going to happen? 6.667 light-years from the origin.
Yes, since this is still not a significant event to the traveling twin, what we really need to do is consider how far away the home-twin is after traveling for 3 years at -0.8c. That would be -2.4 light-years. That is the symultaneous event (-2.4,3) of the home-twin at the turn around event of the traveling twin in the rest frame of the traveling twin. (I hope no one is getting confused by the interchange of x and t in our two conventions.)

All of this is illustrating the relativity of simultaneity. But my point is that simply doing Lorentz transforms of the events in one frame to another frame is not enough. You have to do extra work to figure out the significant events. I'm not sure students learning Special Relativity are going to grasp all this in a beginning course, especially, as I said earlier, it's so easy to understand almost any scenario in one frame.
JDoolin said:
We should also figure out when and where this event happens according to the inbound twin's reference frame.

Here is my calculation of the coordinates of e1, e2, and e3 in the outbound and inbound frames:

attachment.php?attachmentid=43371&d=1328105729.png


e1': departure (x,t)=(0,0)
e2': turnaround (x,t)=(0,3)
e3': return (x,t)=(-13.333, 16.667)

We can calculate the necessary change in velocity by figuring Δx/Δt between event 2 and event 3.

attachment.php?attachmentid=43372&d=1328105729.png


And in the return-frame, we have
e1'': departure (x,t)=(-13.333,-10.667)
e2'': turnaround (x,t)=(0,3)
e3'': return (x,t)=(0,6)
I need some help understanding what you have done here. First off, what is the value of β? Where is the origin? What is the starting frame that you are converting into the double-prime frame?
JDoolin said:
My point is, those numbers DO make sense if you show the space-time diagram in the other frames. However, none of the textbooks on relativity actually SHOW the space-time diagrams in the other frames, so the reader is always left with these loose ends, wondering if it really makes sense, or just accepting the authority of the author, who claims it makes sense.
Can you draw the spacetime diagrams that will help it make sense? I don't see how it can help because as I pointed out significant events in one frame may not be significant in another frame.
JDoolin said:
I know it does make sense, but that's because I've gone through the effort of actually looking at it from the different frames. But I've never seen ANY relativity texts actually go through the effort of transforming the coordinates of the events to other reference frames, and showing how those coordinates DO make sense.

When an author says "it doesn't make sense" does he mean
  • "it doesn't make sense to me," or
  • "it doesn't make sense to most people" or
  • "it really makes no sense, i.e. it is really wrong"
  • It makes no sense, i.e. it is meaningless;
  • "it does not make sense to our primitive human brains, but it is mathematically correct."
  • other?
I stated what I meant in my original post: it doesn't make sense until "we remember that these are coordinates in a different frame".
 
Last edited:
  • #23


JDoolin said:
What is the opinion of the General Relativity Experts? Do the coordinates of those events "make sense" or "not make sense?"
General Relativity Experts? What has this got to do with General Relativity?

After you explain how you got the double-prime coordinates, if it's still relevant, I'll comment on the rest of your post.
 
  • #24


bobc2 said:
Is this what you are looking for? Or did you want to see space-time diagrams for the traveling twin's rest system?
TwinParadox_L4.jpg

Sorry I missed that question this morning bobc2.

Yes, space-time diagrams for the traveling twin's rest systems. (plural)
 
  • #25


I need some help understanding what you have done here. First off, what is the value of β? Where is the origin? What is the starting frame that you are converting into the double-prime frame?

So there are two β values, 0.8 for the outbound trip, and -0.97561 for the inbound trip. For the first boost, I used (0,0) for the origin. For the second boost, I converted directly from the outbound reference frame to the inbound reference frame. I used (x=0,t=3) for the origin, and used a "translate"-"boost"-"translate back" strategy.

I was trying to follow along closely with what you did, with a little more matrices.



Here is a line-by-line explanation.

Code:
e1 = {x1, t1} = {0, 0};
e2 = {x2, t2} = {4, 5};
e3 = {x3, t3} = {0, 10};

This defines the original events in the original reference frame.


Code:
eventList = Transpose[{e1, e2, e3}];

(*This puts all of the relevant events into a matrix form:
eventList=\begin{pmatrix}<br /> 0 &amp; 4 &amp; 0\\ <br /> 0 &amp; 5 &amp; 10<br /> \end{pmatrix}*)

Code:
MatrixForm[eventList]  (*Shown as Out[184]*)
(*This simply sent the output. Mathematica hides the output if you use a semicolon, and shows the output if you leave off the semi-colon*)

Code:
\[Beta] = .8;
\[Gamma] = 1/Sqrt[1 - \[Beta]^2];
LT = \[Gamma]*{{1, -\[Beta]}, {-\[Beta], 1}};

This is the Lorentz Transformation Matrix LT = \left( \begin{array}{cc} \gamma &amp; -\beta \gamma \\ -\beta \gamma &amp; \gamma \end{array} \right)

Code:
outBoundEventList = Chop[LT.eventList];

This line performs the Lorentz Transformation. The dot (.) operator does matrix multiplication. The Chop function takes any value that is closer to zero than 10^-15 and zeros it out. It basically gets rid of a rounding error.

Code:
MatrixForm[outBoundEventList](*shown as Out[189]*)

Shows the result of the operation

Code:
reCenteredOutBoundList = Chop[
   outBoundEventList - {{0, 0, 0}, {3, 3, 3}}];

This translates all of the relevant events back in time 3 years (0,-3). Note the minus sign, putting the turn-around event at the origin. The goal here is to go through a process of "translate"-"boost"-"translate back" so that the transformation is done around the correct origin.
Code:
MatrixForm[reCenteredOutBoundList] (*Shown as Out[172]*)
{{X1, X2, X3}, {T1, T2, T3}} = reCenteredOutBoundList;

I'm just preparing, here, to calculate the velocity for the return trip. We have six numbers in the reCenteredOutBoundList, and we want four of them. This is the quick way to get them.

Code:
\[Beta]2 = (X3 - X2)/(T3 - T2) (*Shown as Out[174]*)

This calculates the velocity change needed for the return trip. This is mathematically, exactly the same thing you did. It came out to be the same value that you got.

Code:
\[Gamma]2 = 1/Sqrt[1 - \[Beta]2^2];
LT2 = \[Gamma]2*{{1, -\[Beta]2}, {-\[Beta]2, 1}};

This finds the Lorentz Transformation matrix needed for the return trip.


Code:
reCenteredInBoundList = Chop[LT2.reCenteredOutBoundList];
inBoundList = reCenteredInBoundList + {{0, 0, 0}, {3, 3, 3}};

This adds three to the hour on all of the events. This is the third step in "Translate"-"Boost"-"Translate back"

Code:
MatrixForm[inBoundList] (*Shown as Out[179]*)

That gives the relevant event coordinates in the final frame.
 
  • #26


ghwellsjr said:
Can you draw the spacetime diagrams that will help it make sense? I don't see how it can help because as I pointed out significant events in one frame may not be significant in another frame.

I will do that.

This event at (x=0, t=5) in the original reference frame seems significant to the nonmoving twin, why? Because that is the time he will (later) figure out that the traveling twin turned around. He doesn't see the inbound twin turn around at that time. He won't see the inbound twin turn around until much later, because of the speed of light delay.

Now, I have this temptation to say we should only worry only about "significant" events, events that the traveling twin actually observes. That temptation is probably pretty valid.

But what are those events that the traveling twin is going to observe? Well, if he's interested at all in figuring out Special Relativity, he's going to aim a telescope at Earth and observe EVERY event. He's going to be watching where he came from the whole time. So he WILL eventually see that event at (x=0,t=5), but when and where?

So he's not going to be just asking what his own watch says. He's going too be asking "What news from Earth? How far away am I from Earth?" And this question has a very INTERESTING answer (to me anyway). But you wouldn't know it by reading any of the texts on special and general relativity.
 
Last edited:
  • #27


Pardon my late entry into the discussion. The paradoxical part of the "Twin paradox" stems from the implicit use of absolute time in a theory in which time is relative.

To be correct you must qualify the question "which twin is older/younger/are they the same age?" with some specification of the frame of reference. Each observer moving at a distinct velocity (vector velocity!) has a distinct definition of time and thus also a distinct definition of "at a given time" i.e. simultaneity of events.

The best way to express the paradox in my opinion is to have the triplets, two of whom leave home simultaneously (on their 20th Birthday) in craft traveling in opposite directions at relativistic speeds, say 80%c=4/5 c and the third staying home. Call them Adam, Bob, and Carl (Bob stays home).

You can then analyze the three questions:
When 20 years have passed for Bob how old are his brothers from his perspective?
When Adam is 20 years older how old does Bob and Carl appear to him (also how fast is Carl moving relative to him)?
When Carl is 20 years older how old do Adam and Bob appear to him?

Answers:
From Bob's perspective the event where Adam and Carl are simultaneous to Bob's 40th Birthday occurs 20 years and 16 light-years from the common launch event so Adam and Carl will each have experienced \tau = \sqrt{ 20^2-16^2}=12 years. They will be as Bob sees it, 32 years old.

From Adam's perspective Bob is moving away at 80%c so on Adam's 40th birthday the simultaneous event in Bob's life is 20 years and 16 light-years away from the launch event and that's 12years along Bob's lifeline so on Bob's 32nd birthday.

To see how Adam perceives Carl's events we need the relative velocities. Note that 80% (of c in c=1 units) is approximately c\tanh(1.0986123), doubling the pseudo angle yields: c\tanh(2\times 1.0986123) \approx 0.97561c.

To add relativistic velocities ( as a percent of c) express them as hyperbolic tangents of a boost parameter and add the parameters. Thus Adam see's Bob moving at 80% c and sees Carl moving at about 97.561% c (boosted twice as much via the parameter.)

From Adam's perspective Carl has a simultaneous event 20 years and about 19.5122 light-years away (97.561% of 20y) from the launch event and that occurs when Carl has experienced \sqrt{20^2 - 19.5122^2} \simeq 4.39 years. Adam see's Carl as only 24.39 years old on Adam's 40th birthday.

Carl see's Bob and Adam in the symmetric way as Adam sees Bob and Carl.

This is the correct relativistic analysis and by making it symmetric we've removed issues of who has or hasn't accelerated. Specifically Adam and Carl each has experienced symmetric opposite accelerations.
 
  • #28


jambaugh said:
The best way to express the paradox in my opinion is to have the triplets, two of whom leave home simultaneously (on their 20th Birthday) in craft traveling in opposite directions at relativistic speeds, say 80%c=4/5 c and the third staying home. Call them Adam, Bob, and Carl (Bob stays home).

You can then analyze the three questions:
When 20 years have passed for Bob how old are his brothers from his perspective?
When Adam is 20 years older how old does Bob and Carl appear to him (also how fast is Carl moving relative to him)?
When Carl is 20 years older how old do Adam and Bob appear to him?

In short, when each triplet reaches 40 years old,
As Bob calculates it, Adam and Carl are 32 years old.
As Adam calculates it, Bob turns 32, and Carl turns only 24.39
As Carl calculates it, Bob turns 32, and Adam turns 24.39

What you are calculating is the "current age of distant objects." What you probably don't know is that there is a raging controversy on this topic; (well maybe just a one-man-raging-controversy.) Namely Mike Fontenot is arguing that this is an important concept. I agree that it is an important concept. You, apparently agree that it is an important concept.

But General Relativity Experts are claiming that it is NOT an important concept. They apparently think that the "current age of distant objects" is a fabrication.

http://en.wikipedia.org/wiki/Talk:Twin_paradox#Unacceptable_original_research

This, along with the other blatant fabrications introduced by Michael Fontenot, should be removed, and no mention should be made here or anywhere else in the encyclopedia of his uncited paper from the unreliable source Physics Essays, which has failed for over 10 years to generate the slightest interest from professionals in the field.

Why do professionals in the field not have an interest in figuring out such a simple question?
 
Last edited:
  • #29


jambaugh said:
The paradoxical part of the "Twin paradox" stems from the implicit use of absolute time in a theory in which time is relative.

To be correct you must qualify the question "which twin is older/younger/are they the same age?" with some specification of the frame of reference. Each observer moving at a distinct velocity (vector velocity!) has a distinct definition of time and thus also a distinct definition of "at a given time" i.e. simultaneity of events.

Wow that's well said. I think that's the clearest & most accurate comment in this thread regarding the twin paradox.
 
  • #30


ghwellsjr said:
Can you draw the spacetime diagrams that will help it make sense? I don't see how it can help because as I pointed out significant events in one frame may not be significant in another frame.


Here is a space-time diagram created by WWoods for Wikipedia's Twin Paradox Article.

20100816203320%21Twin_5.png


You can see discussion of that here:
here, here, and here

WWoods did a good job at picking out the events A, B, and C. B is simultaneous with the turn-around event in the home-frame. A is simultaneous with the turn-around-event in the outbound frame, and C is simultaneous with the turn-around event in the return-bound frame.
 
  • #31


JDoolin said:
What you are calculating is the "current age of distant objects." What you probably don't know is that there is a raging controversy on this topic; (well maybe just a one-man-raging-controversy.) Namely Mike Fontenot is arguing that this is an important concept. I agree that it is an important concept. You, apparently agree that it is an important concept.

But General Relativity Experts are claiming that it is NOT an important concept. They apparently think that the "current age of distant objects" is a fabrication.

It is an important concept in SR but ill defined in GR. A distant event is separated in space and in time. The concept of "current age" is an attempt to ignore the spatial distance which is problematic in SR (hence confusion over the twins) and down-right impossible to do in GR.

In GR we cannot extend the t=constant point on the observer's world line as a plane due to curvature of space-time. One can at best define a geodesic "now" hyper-surface tangent to local linear space but that can be topologically peculiar and altered dramatically by intervening masses, not to mention changing over time. Its not the kind of thing one can project out in the absence of distant observations. For example geodesically extending the "right now" space into a black hole will manifest as a time-like surface (with a space-like normal). Also in a deSitter space-time topology you'll have coordinate singularities (all of my past and future "right now" hyperplanes meet at a certain distance.

I see no problem simply rejecting any concept of "current time at distant objects" in GR scale physics. It is very theory dependent and far from operationally meaningful.
 
  • #32


jambaugh said:
It is an important concept in SR but ill defined in GR. A distant event is separated in space and in time. The concept of "current age" is an attempt to ignore the spatial distance which is problematic in SR (hence confusion over the twins) and down-right impossible to do in GR.

The only problematic thing about "spatial distance" in SR is that there are multiple meanings for it.

"Radar Distance"
"Simultaneous Distance"
"Image Distance"

The confusion mostly lies in not distinguishing between the meanings.

Dolby Gull are calculating Radar Distance.
WWoods, and Mike Fontenot are figuring out Simultaneous Distance.
For stellar aberration, and superluminal jets, you work with image distance.

The point is, they are all compatible if you say what you mean, but there is a lot of argument because people all think their meaning is "the best" meaning, or "the only" meaning.

jambaugh said:
I see no problem simply rejecting any concept of "current time at distant objects" in GR scale physics. It is very theory dependent and far from operationally meaningful.

How big is GR scale physics? Is that on a larger scale than stellar aberration, or Ole Romer's calculations? Or are stellar aberration and Ole Romer's calculations operationally meaningless?
 
Last edited:
  • #33


Re: Current age of distant objects...

jambaugh said:
It is an important concept in SR but ill defined in GR. A distant event is separated in space and in time. The concept of "current age" is an attempt to ignore the spatial distance which is problematic in SR (hence confusion over the twins) and down-right impossible to do in GR.

What exactly do you mean by "ill defined" and what exactly do you mean by "impossible to do in GR"

In GR we cannot extend the t=constant point on the observer's world line as a plane due to curvature of space-time. One can at best define a geodesic "now" hyper-surface tangent to local linear space but that can be topologically peculiar and altered dramatically by intervening masses, not to mention changing over time. Its not the kind of thing one can project out in the absence of distant observations. For example geodesically extending the "right now" space into a black hole will manifest as a time-like surface (with a space-like normal). Also in a deSitter space-time topology you'll have coordinate singularities (all of my past and future "right now" hyperplanes meet at a certain distance.

You probably didn't mean for me to address this point-by-point, but I can say for sure that we have distant observations, some of them up to forty-six billion light-years away, I believe.

Also, to the best of my knowledge, we actually have located some black holes in the universe. Maybe we don't know exactly how far away they are, but we can estimate. I don't want to extend "right now" INTO the black hole, but I would certainly like to get a good approximation of where the black hole IS.

When you talk about extending "right now" into a black hole are you talking about the Painleve coordinates? There are some strange coordinate systems that define objects falling into a black hole as co-moving. So yes, that is what I would call ill-defined, and in that situation, yes, doing such a thing makes using the Lorentz Transformations invalid.


I see no problem simply rejecting any concept of "current time at distant objects" in GR scale physics. It is very theory dependent and far from operationally meaningful.

It is theory dependent, in the sense that if you define a coordinate system based on objects which are accelerating relative to one another (Painleve coordinates) or moving away from each other (FLRW metric) then you cannot use Special Relativity in that coordinate system. But if you have a coordinate system where the coordinate system is NOT shrinking or expanding or accelerating, etc, (for instance the Schwarzschild metric.) then the coordinates are defined in the same way as Special Relativity, and subject to the same operations; i.e. rotation, translation, Lorentz Transformation.
 
  • #34


JDoolin said:
The only problematic thing about "spatial distance" in SR is that there are multiple meanings for it.
exactly.
How big is GR scale physics?
that depends on the precision at which you're distinguishing events, the distance/durations over which you are comparing them, and the degree to which the intervening space is curved. When GR corrections become significant at your level of precision... there you go.
JDoolin said:
What exactly do you mean by "ill defined" and what exactly do you mean by "impossible to do in GR"
In SR an (inertial) observer frame is defined by a set of rectilinear coordinates, typically ortho-nomal ones are chosen, as we see in the TP the spatial separation as well as time separation of two events in one frame is needed to establish the same in another frame and hence compare simultaneity of events. In GR there are no global inertial frames and by "frame" we mean a set of curvilinear coordinates with the operational meaning noted by Einstein as a network of clocks and measuring rods. It is not sufficient to compare observer frames to just know where each observer's position and velocities in the other's frames. The "observer" is no longer locally defined as in SR. Indeed comparing velocities of two objects becomes problematic as one must ask "over what path?" and carry out parallel transport.

Listen, I don't want to hijack the thread on this. If you want to discuss it further start a new thread and pm me a link or post it here.
 
  • #35


Nice formulas and diagrams... [stares confused, he only knows how to code]

On the related note, I thought that logic tells me that traveling at high speed causes slowing of the clocks... Why would "acceleration" cause the time difference when we consider this example:

Consider the case when twins traveled in parallel near the speed of light in 2 separate space ships and being close to Earth, the first one decided to land on Earth and the second one on a planet 30 LY away a few seconds later... They both send their pictures as they land.

For the second twin, the picture arrives a few moments later. The first one receives it after 30 years when she is 30 years older. It's obvious that they concluded that not acceleration but travel at near the speed of light caused the "differences in age".

Unless I am wrong, I didn't violate any GR/SR principles in this thought experiment, but I don't see the problem with this "perception" of clocks.
 
  • #36


kamenjar said:
Nice formulas and diagrams... [stares confused, he only knows how to code]

On the related note, I thought that logic tells me that traveling at high speed causes slowing of the clocks... Why would "acceleration" cause the time difference when we consider this example:

Consider the case when twins traveled in parallel near the speed of light in 2 separate space ships and being close to Earth, the first one decided to land on Earth and the second one on a planet 30 LY away a few seconds later... They both send their pictures as they land.

For the second twin, the picture arrives a few moments later. The first one receives it after 30 years when she is 30 years older. It's obvious that they concluded that not acceleration but travel at near the speed of light caused the "differences in age".

Unless I am wrong, I didn't violate any GR/SR principles in this thought experiment, but I don't see the problem with this "perception" of clocks.

The twin paradox really doesn't happen in your example. For the paradox to occur, you have to have one of the twins go away and come back. You have to have them meet up in the same place they started.

The twin-paradox has a particular problem set-up:
One twin stays home while the other one goes on a journey and comes back. (That being said, I leave it to any General Relativity Experts to explain how this can be accomplished without any acceleration, as per their frequent claim.)​

Controversial Explanation of Twin Paradox:

I've added one detail. Instead of having the twin just go out to an arbitrary point in space, this twin actually has a destination, Planet X. I have a couple of "quizzes" based on the paradox with 99% of the speed of light right here:


The key to understanding the problem is the asymmetry involved. Whereas the stay-at-home twin merely sees the traveling-twin turn around and come back, the traveling-twin, during acceleration, sees the image of the stay-at-home twin suddenly jumps back! Whereas the stay-at-home twin sees the image of the traveling-twin departing for a large amount of time, and approaching for a small amount of time, the traveling-twin sees both parts of the journey take an equal amount of time.

Why is it controversial?

General Relativity Experts will always claim that this (the sudden lurching away of the image) is nonsense. • They will say the Lorentz Transformation is local and has no effect on faraway events. • They will claim that straight lines do not exist. • They will claim that coordinate systems are a religion. • They will say there is no clear meaning for distant "location" or "velocity" or "now," or that these notions are ill-defined. • I've even seen them argue that "reality" is an ambiguous concept.​

And I certainly agree that these concepts are ill-defined, but that is not a problem with the concepts. That is a problem of the text-book writers whose responsibility should include giving clear definitions.

The point is, though, that I do not understand the General Relativity Expert's arguments. Because I don't understand their arguments, the assumption is that I lack the education to understand their arguments, which I can acknowledge. Those arguments I listed don't make sense to me. But when we say "it doesn't make sense" we need to figure out what that means.

We can classify the various arguments of the General Relativity experts, and in exactly what way they don't make sense:

  • the Lorentz Transformation is local and has no effect on faraway events (Wrong. The Lorentz Transformation affects every event in spacetime.)
  • straight lines do not exist. (Not even wrong. How would you know that no objects move in straight lines if the concept of straight lines doesn't exist?)
  • coordinate systems are a religion (total non sequitur)
    no clear meaning for distant "location" or "velocity" or "now," (wrong, certainly wrong in the context of Special Relativity)
  • these notions are ill-defined. (Right. But that fault lies with the definers.)
  • Reality is an ambiguous concept. (total non sequitur. Doesn't that sound more like a religion than coordinate systems?)
 
Last edited:
  • #37


JDoolin said:
The key to understanding the problem is the asymmetry involved. Whereas the stay-at-home twin merely sees the traveling-twin turn around and come back, the traveling-twin, during acceleration, sees the image of the stay-at-home twin suddenly jumps back!


Whereas the stay-at-home twin sees the image of the traveling-twin departing for a large amount of time, and approaching for a small amount of time, the traveling-twin sees both parts of the journey take an equal amount of time.

I'm not not quite sure what you mean by "the image of the stay-at-home twin suddenly jumps back". Nothing special happens to the image other than the traveling twin seeing it go from receding to approaching. In other words, the traveling twin also just sees the stay -at-home twin turn around and come back. The difference is that the traveling twin sees this happen immediately upon turn around, while the stay at home twin must wait for the light carrying the information about the turn around to travel the distance between them. This is what leads to the unequal times each sees in the halves of the journey.
 
  • #38


Janus said:
Nothing special happens to the image other than the traveling twin seeing it go from receding to approaching.

Can you verify that with some math, perhaps? You're wrong, but unless you actually perform the Lorentz Transformation on the relevant events, you won't see why. But even without doing the math, you should be familiar with the idea of "stellar aberration." It's the same phenomenon, but to the side, instead of directly in front of you.

(Of course, after a Lorentz Transformation is done, common consensus of General Relativity Experts is that you should disregard the distance coordinates of events after Lorentz Transformation as meaningless, or nonsensical, as described in my previous posts.)
 
Last edited:
  • #39


Janus said:
Nothing special happens to the image other than the traveling twin seeing it go from receding to approaching.

Take care, also, to distinguish, also between image distance and simultaneous distance. If you change this sentence to "The simultaneous distance to Earth is the same before and after the transformation" then it would be true.

But the image distance changes.

Attached is a space-time diagram distinguishing between radar-distance, image distance, and simultaneous distance.
 

Attachments

  • Radar-v-Simul-v-Image.png
    Radar-v-Simul-v-Image.png
    13.9 KB · Views: 437
  • #40


JDoolin said:
Can you verify that with some math, perhaps? You're wrong, but unless you actually perform the Lorentz Transformation on the relevant events, you won't see why. But even without doing the math, you should be familiar with the idea of "stellar aberration." It's the same phenomenon, but to the side, instead of directly in front of you.

(Of course, after a Lorentz Transformation is done, common consensus of General Relativity Experts is that you should disregard the distance coordinates of events after Lorentz Transformation as meaningless, or nonsensical, as described in my previous posts.)

When I did this a long time ago, I concluded that if each twin were holding a clock that could be seen at great distance, the turnaround twin, at moment of turnaround would see the distant clock:

1) Change color from redshift to blueshift
2) Shrink in size, and become brighter
3) change rate

However, there would be no jump in the hands on the clock - just rate change.

I gather, by 'image distance' you are referring to interpreting the image size (a direct observable) as a distance based on knowledge of rest frame size and some model. However, you have a choice of models, including which optical effects you compensate for or not. The image size is an observable. Any particular image distance is a model dependent interpretation.

[Edit: And I think parallax distance would be the same as naively interpreted image size distance]
 
Last edited:
  • #41


PAllen said:
When I did this a long time ago, I concluded that if each twin were holding a clock that could be seen at great distance, the turnaround twin, at moment of turnaround would see the distant clock:

1) Change color from redshift to blueshift
2) Shrink in size, and become brighter
3) change rate

However, there would be no jump in the hands on the clock - just rate change.

Yes, yes, yes, and yes. All correct.

I gather, by 'image distance' you are referring to interpreting the image size (a direct observable) as a distance based on knowledge of rest frame size and some model. However, you have a choice of models, including which optical effects you compensate for or not. The image size is an observable. Any particular image distance is a model dependent interpretation.

[Edit: And I think parallax distance would be the same as naively interpreted image size distance]

That's not exactly what I'm referring to. I'm referring to the intersecton of the observer's past light-cone with the world-line(s) of the object. The distance to the image is mathematically identical to the distance to the event that produced the image. If you're doing everything right, (i.e. if you choose the right model) it should work out the same.

Here is a conceptual animation of what I would do to find the image distance to an object:

movingcircletop_2.gif


with some discussion of it here:

http://www.spoonfedrelativity.com/pages/Is-Lorentz-Contraction-Invisible.php

and last August, I opened a thread about this in Physics Forums:

https://www.physicsforums.com/showthread.php?t=520875
 
  • #42


It seems like this equivalent to the following wording:

I pretend I was always moving the way I am now, then I figure out what distance I would have been from the object at the time its image was emitted. Distance here may be taken to be Lorentz 'ruler distance' based on my current simultaneity extended back in time.

Assuming you are now moving inertially, I believe this distance will be the same as image size distance (naively interpreted) and also the same as parallax distance. It will also be the same as radar distance to the emitting event determined by someone who really was always moving the way I am now.

So then we get into philosophy. Is it reasonable to interpret observations according to a counterfactual model (I wasn't always moving the way I am now)? I've expressed the view that it is perfectly feasible to do this, but not required or preferred.
 
  • #43


PAllen said:
It seems like this equivalent to the following wording:

I pretend I was always moving the way I am now, then I figure out what distance I would have been from the object at the time its image was emitted. Distance here may be taken to be Lorentz 'ruler distance' based on my current simultaneity extended back in time.

Assuming you are now moving inertially, I believe this distance will be the same as image size distance (naively interpreted) and also the same as parallax distance. It will also be the same as radar distance to the emitting event determined by someone who really was always moving the way I am now.

So then we get into philosophy. Is it reasonable to interpret observations according to a counterfactual model (I wasn't always moving the way I am now)? I've expressed the view that it is perfectly feasible to do this, but not required or preferred.

Yes, well said.

The same thing is done with a rotation transformation. You start with the mapping of events in space, then you ask the question, what would things look like if I had ALWAYS been facing to my left? And boom, there you are, facing left. And the light is reaching you as though you had always been facing left.

Similarly, The Lorentz Transformation Equation is mapping that counterfactual into the factual.

When you jump on a passing trolley, you are now in the reference frame of that trolley; your experience of events will be exactly the same as the other people on board that trolley. There is nothing about your history that can affect your current experience.

So the question to ask then is whether it is "just feasible" to do this, or is it "required?"

I think it is required.

Is there some kind of loophole where your immediate experience after jumping on a trolley, or turning your head left is affected by your experience before jumping on a trolley, or turning your head left?
 
  • #44


Well, if you change direction quickly enough, you will see extremely superluminal changes in image distance. You might argue that turning your head can create a superluminal illusion, but that's just it - everyone takes it to be illusion because you can feel rotation.

Similarly the always (or long time) inertial observer has every reason to treat the straightforward interpretation of measurements as being 'as real as anything gets' in physics. In contrast, someone going through extreme G-force to reverse direction has no rational reason to believe their direction change caused distant objects to move superluminally. They might prefer to equate their situation to the the head turner, and treat the visual changes as optical rather than physical phenomena. The very simplest way to do this is to pick any inertial frame for the analysis of the whole trip, translating measurements to it. Then, you have no surprising interpretations. Alternatively, you can choose any number of global coordinate schemes that mesh changing local frames together in such a way as to avoid particular undesirable interpretations (e.g. superluminal motion).

We've been down this road before. Many here grant that your preferred approach is a feasible way analyze any SR situation. We differ only when you want to insist it is the only or strongly preferred approach.
 
  • #45


We've been down this road before. Many here grant that your preferred approach is a feasible way analyze any SR situation. We differ only when you want to insist it is the only or strongly preferred approach.

The alternatives I can think of are:

(1) Coordinates of distant events are observer dependent.
(2) Coordinates of distant events are theory dependent.
(3) Coordinates of distant events are ambiguous and undefinable.

I'm trying to make point #1 here, and I think you are either trying to make point #2 or point #3.

As for point #3, I don't know how to respond to that, but...

As for point #2, If you use spherical coordinates, Rindler Coordinates, Painleve Coordinates, FLRW coordinates, Schwarzschild Coordinates, Cartesian Coordinates, Minkowski Coordinates, then YES the coordinates are theory dependent. Coordinates are arbitrary in this sense. Description based coordinates can be defined whimsically. Once defined whimsically, description based coordinate systems can become difficult or even impossible to Lorentz Transform.

But Lorentz Transformation and Rotation are transformations of a completely different character. They don't change the description of the coordinates; they change the observer.

And in a transformation that changes the observer, you can't just shrug off changes in the positions of events as illusionary. They are real changes in the observer's perspective.

If you want more information on what I mean by "description dependent" vs "observer dependent" transformations, see http://www.spoonfedrelativity.com/pages/Types-of-Transformations.php.
 
  • #46


PAllen said:
The very simplest way to do this is to pick any inertial frame for the analysis of the whole trip, translating measurements to it. Then, you have no surprising interpretations.

When surprising ideas are defined with clarity, they may appear to be ridiculous. However, if an idea is true, it should be possible to defend the idea, even if, at first, it appears ridiculous.

Alternatively, you can choose any number of global coordinate schemes that mesh changing local frames together in such a way as to avoid particular undesirable interpretations (e.g. superluminal motion).

When we have an a priori idea of what represents an "undesirable interpretation" do you think it is appropriate to take extra steps to hide the facts so that this interpretation is hidden, or wouldn't it be more appropriate to acknowledge the facts, and expand our vocabulary of ideas until we can explain WHY this doesn't break the laws of Special Relativity?

The correct answer is going to "sound" ridiculous. But if it is expressed with clarity, it can be defended.

The fact is when I am on a merry-go-round, distant objects DO move faster than the speed of light RELATIVE TO ME. But in no way does that mean that the distant objects have traveled faster than the speed of light in any static reference frame. When I am on a merry-go-round, my reference frame is continuously changing.

(1) We can continue to make the claim that the experience of the person on the merry-go-round represents a single local reference frame, and just ignore the non-local objects which are (mathematically, but not really) moving faster than the speed of light.
(2) Or we could be bold, (stand up to ridicule,) and make the claim that the person on the merry-go-round is continuously changing their reference frame, and acknowledge the objects which are moving faster than the speed of light relative to the observer, but NOT relative to any static reference frame.
 

Similar threads

Back
Top