The Energy-Momentum Tensor

agostino981
Messages
7
Reaction score
0
I am a bit confused here.

In the Einstein Field Equation, there is a tensor called stress-energy tensor in wikipedia and energy-momentum tensor in some books or papers which is $$T_{\mu\nu}=\frac{2}{\sqrt{-g}}\frac{\delta(\mathcal{L} \sqrt{-g})}{\delta g_{\mu\nu}}$$

Is it equivalent to the energy-momentum tensor I came across in QFT?

$$T^{\mu\nu}=\frac{\partial\mathcal{L}}{\partial( \partial_\mu\phi_{a})}\partial^\nu\phi_a -g^{\mu\nu}\mathcal{L}$$

Thanks in advance.
 
Physics news on Phys.org
agostino981 said:
I am a bit confused here.

In the Einstein Field Equation, there is a tensor called stress-energy tensor in wikipedia and energy-momentum tensor in some books or papers which is $$T_{\mu\nu}=\frac{2}{\sqrt{-g}}\frac{\delta(\mathcal{L} \sqrt{-g})}{\delta g_{\mu\nu}}$$
This is the general definition of the SYMMETRICAL energy-momentum tensor.

$$T^{\mu\nu}=\frac{\partial\mathcal{L}}{\partial( \partial_\mu\phi_{a})}\partial^\nu\phi_a -g^{\mu\nu}\mathcal{L}$$
Thanks in advance.

This is the CANONICAL energy-momentum tensor. For scalar fields, the two are identical. For other fields they differ by a total divergence. They are equivalent in the sense that both leads to the same energy-momentum 4-vector
P^{ \mu } = \int d^{ 3 } x T^{ 0 \mu } ( x )
 
agostino981 said:
I am a bit confused here.

In the Einstein Field Equation, there is a tensor called stress-energy tensor in wikipedia and energy-momentum tensor in some books or papers which is $$T_{\mu\nu}=\frac{2}{\sqrt{-g}}\frac{\delta(\mathcal{L} \sqrt{-g})}{\delta g_{\mu\nu}}$$

Is it equivalent to the energy-momentum tensor I came across in QFT?

$$T^{\mu\nu}=\frac{\partial\mathcal{L}}{\partial( \partial_\mu\phi_{a})}\partial^\nu\phi_a -g^{\mu\nu}\mathcal{L}$$

Thanks in advance.

They are not, in general, the same. However, in QFT, the stress-energy tensor is not unique, because you can add additional terms to it that have no effect on conservation laws. There is a procedure for tweaking the canonical stress-energy tensor to get a modified tensor, the Belinfante–Rosenfeld stress–energy tensor, that (according to Wikipedia, at least) agrees with the Hilbert stress-energy tensor used by General Relativity:
http://en.wikipedia.org/wiki/Belinfante–Rosenfeld_stress–energy_tensor
 
Wald has a good discussion of this, and shows that the first form arises naturalliy from formulating GR as a Lagrangian theory.
 
Thanks! That clears things up.
 
Thread 'Can this experiment break Lorentz symmetry?'
1. The Big Idea: According to Einstein’s relativity, all motion is relative. You can’t tell if you’re moving at a constant velocity without looking outside. But what if there is a universal “rest frame” (like the old idea of the “ether”)? This experiment tries to find out by looking for tiny, directional differences in how objects move inside a sealed box. 2. How It Works: The Two-Stage Process Imagine a perfectly isolated spacecraft (our lab) moving through space at some unknown speed V...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. The Relativator was sold by (as printed) Atomic Laboratories, Inc. 3086 Claremont Ave, Berkeley 5, California , which seems to be a division of Cenco Instruments (Central Scientific Company)... Source: https://www.physicsforums.com/insights/relativator-circular-slide-rule-simulated-with-desmos/ by @robphy
In Philippe G. Ciarlet's book 'An introduction to differential geometry', He gives the integrability conditions of the differential equations like this: $$ \partial_{i} F_{lj}=L^p_{ij} F_{lp},\,\,\,F_{ij}(x_0)=F^0_{ij}. $$ The integrability conditions for the existence of a global solution ##F_{lj}## is: $$ R^i_{jkl}\equiv\partial_k L^i_{jl}-\partial_l L^i_{jk}+L^h_{jl} L^i_{hk}-L^h_{jk} L^i_{hl}=0 $$ Then from the equation: $$\nabla_b e_a= \Gamma^c_{ab} e_c$$ Using cartesian basis ## e_I...
Back
Top