0xDEADBEEF said:
This problem does not have a mathematical answer due to supercooling. When water is cooled below 0°C the ice configuration is more stable than the liquid configuration. If a bit of water freezes it releases heat (just like these hand warming pads do on crystallization). This heat needs to be transported away and here all hell breaks loose. We can calculate the heat transfer through the wall of the container, and maybe we can even say something about the thermal conductivity of the water, but as soon as we have crystals in random places, we ave an inhomogeneous medium. Also the ice sheet probably starts to form at the containers surface reducing the thermal conductivity. In addition if the container has a certain minimum width most heat transport is due to convection, which produces turbulent flow and that is impossible to solve mathematically (has been for the last 200 years at least). And now we come to the worst part which is supercooling, in the absence of crystal germs water will stay liquid below 0°C so therefore water that is just cooled a bit below 0°C may never become ice or it may become so due to a cosmic ray at a random moment. It really is impossible to calculate. You can get some estimates from the thermal conductivity of water though.
You obviously don't have much experience doing math modeling of physical systems. I stand by what I said in my previous post, and guarantee that I can mathematically model this problem. Much of what you said in your paragraph above is incorrect, but I'm not going to harp on it. My experience has been that, if you think that something can't be modeled, then you will never be able to model it.
At the very least, for this problem, you can bound the answer, setting an upper limit on the amount of time it will take for all the water to freeze. For example, even though natural convection is present in the actual system, this natural convection will always enhance the rate of heat transfer. So, if you neglect natural convection, this will provide a lower bound to the rate of heat transfer, and an upper bound to the amount of time required. Neglecting natural convection within the container simplifies things considerably by reducing the behavior within the container to an unsteady state heat conduction problem (with change of phase and discontinuous heat flux at the advancing freeze front). Outside the container, the heat transfer will be determined by the heat transfer coefficient on the air side. From experience, this will have a value on the order of 1 to 10 BTU/hr-ft
2-F. The calculations can be done for both these values.
The shape and size of the container will be a factor. I would start out by considering a spherical container "levitated" within the air of the freezer. This would make the heat transfer problem 1 dimensional (in the radial direction). I would assume that the water completely fills the container. One could solve this problem for several different sized containers, but it would be more efficient to reduce the equations to dimensionless form.
Another shape I would consider would be a flat slab, neglecting the heat transfer at the edges. This problem is also one dimensional.
One can see that, by making the right kinds of simplifying assumptions, the problem can be reduced to a manageable formulation. If I really wanted to solve this problem more precisely, I would resort to using computational fluid dynamics tools.
I am actually considering solving this problem to demonstrate in detail how it can be done, but I am hoping that the above allusions to the bounding approach will suffice for most readers.