How Does Matrix Transposition Affect the Product A^T A?

  • Thread starter Thread starter jtruth914
  • Start date Start date
  • Tags Tags
    Matrix Transpose
jtruth914
Messages
20
Reaction score
0
Let B=A^{T}A. Show that b_{ij}=a^{T}_{i}a_{j}.

I have no idea how to approach this problem.
 
Physics news on Phys.org
jtruth914 said:
Let B=A^{T}A. Show that b_{ij}=a^{T}_{i}a_{j}.

I have no idea how to approach this problem.
I don't understand your notation. Could you please clarify what you've written?
 
Let B=A^{T}A. Show that b_{ij}=a^{T}_{i}a_{j}.

When you transpose AYou are flipping the rows and columns.
When you multiply A^{T}A you would generate each element b_{ij} will be the dot product of row i of the first matrix and column j of the second matrix. Since the first matrix is the transposition of the second, row i of that transposition will be column i of the original. So each element will be the dot product of two column vectors:

b_{ij}=a_{i}·a_{j}

Using matrix notation, this is:

b_{ij}=a^{T}_{i}a_{j}
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top